\qquad

CALCULUS JOURNAL APPLICATIONS OF INTEGRATION

1. (a) The general solution of a differential equation contains \qquad while a particular solution \qquad
2. The marginal revenue/cost function is \qquad of the original revenue/cost function.
3. (a) Hyperbolic functions are related to the trig functions, through the use of \qquad .
4. (a) The curve that results from letting a cable hang loosely between two poles is called \qquad .
(b) This curve is used in engineering applications because \qquad
\qquad .
5. (a) Integration is used to calculate work when \qquad .
6. The limits of integration when pumping a fluid out of a tank are determined by \qquad
7. (a) A fluid is \qquad .
(b) Fluid force is while fluid pressure is \qquad .
(c) The units typically used to measure fluid force are \qquad while the units used to measure fluid pressure are \qquad .
(d) Pascal's Principle states that \qquad
(e) When finding the fluid force of a vertical object, you determine what numbers to integrate between by \qquad .
8. It is necessary to set up a proportion when calculating work or fluid force if \qquad
\qquad is changing.
9. List the following rules, facts, or formulas. Explain the meaning of all variables in a formula!
a) Mathematical relationship between position, acceleration, and velocity
b) Definitions of $\sinh x$ and $\cosh x$.
c) Derivatives of 6 hyperbolic trig functions
d) Work done by a variable force \& the two common units of measure for work
e) Hooke's Law
f) Work to pump fluid out of a tank
g) Fluid force on a vertical object
