Hypothesis Testing
Null Hypothesis: H_{0} - Trying to disprove

Alternative Hypothesis:

- What you think is happening
Testing airbags. Researchers believe they do not open properly.
H_{0} : Airbags open properly.
It a: Airbags do not open properly
Developers believe new paint dries more quickly.
H_{0} : Paint dries at the same rate or slower ta: Paint dries faster.

Hypothesis Test

1) Define parameters. (What numerical in f_{0} is needed.)
2) Set up $H_{0}+H_{a}$. (in terms of H's using $\left\langle_{1}\right\rangle_{1}=$)
3) Set the criteria for the test.
a) What Kind of distribution (normal)
b) Set level of confidence. (for H_{0})

$$
p<0_{(98 \%)}^{0.05} \quad p \leq .01
$$

4) List sample evidence.

$$
\begin{aligned}
& \text { sample evidence. } \\
& n, \bar{x}, \sigma \text { or } \sigma_{\bar{x}}, Z^{*}\binom{\text { called the }}{\text { test statistic }}
\end{aligned}
$$

5) Find probability. $(p=) \quad z^{*}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}$
6) If $p<\#$, then Reject the H_{0}.

If $p>\#$, then Fail to Reject the H_{0}.

Millvale H.S. - Natural Test
National Test $\mu=50 \quad \sigma=10$
900 Students $\bar{x}=51.1 \quad \delta=10$
Did Millvale students really do better?

1) Parameter: student test scores
2) $H_{0}: \mu=\operatorname{so}(\leqslant)$

$$
\text { It: } \mu>50
$$

3) Criteria: Normal; $p<0.05$
4) $n=900, \sigma=s=10, \bar{x}=51.1 \mu=50$

$$
\begin{aligned}
\sigma_{\bar{x}}=\frac{10}{\sqrt{900}}=0.333 \quad z^{*}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} & =\frac{51.1-50}{0.333} \\
& =3.3
\end{aligned}
$$

5)

$$
p=0.0005
$$

6) Reject the H_{0}; MHS students did perform bettor.

Kelley Employment Agency $\mu=82 \sigma=8$
Brown Agency $n=36 \quad \bar{x}=79 \quad S=8$

1) Param: toot scores
2) H_{0} :

$$
\begin{array}{ll}
H_{0}: & \mu \neq 82 \\
H_{a}: & \mu=82
\end{array}
$$

3) Criteria; Normal, $p<0.05$
4)

$$
\begin{aligned}
& n=36 \quad \bar{x}=79 \quad s=8 \\
& \sigma_{\bar{x}}=\frac{8}{\sqrt{36}}=1.333 \\
& z^{*}=\frac{79-8 z}{1.333}=-2.25
\end{aligned}
$$

5)

6) Reject the H_{0}; Test means are the same.

