Name	
------	--

ALGEBRA II JOURNAL Sequences & Series

1.	A sequence is			
	while a series is		·	
2.	(a) $\sum_{n=4}^{7} 2n-1$ is an example of notation.			
	(b) The example above would be evaluated by			
3.	An arithmetic sequence forms a pattern by			
	while a geometric sequence forms a pattern by			
4.	You can determine which geometric series formula to use by			
5.	(a) A series written in summation notation in the form $\sum_{i=q}^{b} pi + q$ will result in a(n)			
	series with <i>p</i> as the			
	(b) A series written in summation notation in the form $\sum_{i=a}^{b} p \cdot q^{i}$ will result in a(n)			
	series with q as the			
	(c) If a series written in summation notation runs from $i = a$ to b , the number of terms in the serie can be calculated by			
6.	(a) If an infinite geometric series has a finite sum (such as 4197), it is said to			
	and this occurs when			
	(b) If an infinite geometric series goes to infinity, it is said to	an	d this	
	occurs when	Ke	сy	
7.	Important Rules, Formulas, Etc.a) Arithmetic sequence & series formulas (2)	$a_1 =$		
		$a_n =$		
		d =		
	b) Geometric sequence & series formulas (3)	<i>n</i> =		
		<i>r</i> =		
		$S_n =$		

- c) Infinite geometric series formula (1)
- d) Fibonacci sequence and explain how it is created