\qquad

ALGEBRA II JOURNAL
 Sequences \& Series

1. A sequence is \qquad while a series is \qquad .
2. (a) $\sum_{n=4}^{7} 2 n-1$ is an example of \qquad notation.
(b) The example above would be evaluated by \qquad
\qquad .
3. An arithmetic sequence forms a pattern by \qquad
\qquad while a geometric sequence forms a pattern by \qquad
\qquad .
4. You can determine which geometric series formula to use by \qquad
\qquad .
5. (a) A series written in summation notation in the form $\sum_{i=a}^{b} p i+q$ will result in a(n) \qquad series with p as the \qquad .
(b) A series written in summation notation in the form $\sum_{i=a}^{b} p \cdot q^{i}$ will result in a(n) \qquad series with q as the \qquad .
(c) If a series written in summation notation runs from $i=a$ to b, the number of terms in the series can be calculated by \qquad .
6. (a) If an infinite geometric series has a finite sum (such as 4197), it is said to \qquad and this occurs when \qquad .
(b) If an infinite geometric series goes to infinity, it is said to \qquad and this occurs when \qquad .
7. Important Rules, Formulas, Etc.
a) Arithmetic sequence \& series formulas (2)
b) Geometric sequence \& series formulas (3)

$$
\begin{aligned}
& \text { Key } \\
& a_{1}= \\
& a_{n}= \\
& d= \\
& n= \\
& r= \\
& S_{n}=
\end{aligned}
$$

c) Infinite geometric series formula (1)
d) Fibonacci sequence and explain how it is created

