Curve Sketching 2

$$
f(x)=\frac{x^{2}+1}{x^{2}-9} \quad \text { 要到ical } f(x)= \pm .
$$

$\lim _{x \rightarrow 3^{+}} \frac{x^{2}+1}{x^{2}-9} \cdot \frac{ \pm}{+}=+\infty \frac{\lim _{x \rightarrow \star} f(x)= \pm \infty}{\lim _{x \rightarrow \infty} f(x)=4}$
$\lim _{x \rightarrow-3^{+}} \frac{+}{-}=-\infty \lim _{x \rightarrow \pm \infty} f(x)=\#$
$\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}}=1$
Vertical $x=3$

$$
x=-3
$$

Horiz $y=1$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}-9\right) 2 x-\left(x^{2}+1\right) 2 x}{\left(x^{2}-9\right)^{2}} \\
& =\frac{2 x\left[x^{2}-9-x^{2}-1\right]}{\left(x^{2}-9\right)^{2}}
\end{aligned}
$$

$$
0=\frac{-20 x}{\left(x^{2}-9\right)^{2}} \Leftarrow f^{\prime \prime}(x)=\frac{\left(x^{2}-9\right)^{2} \cdot-20-(-20 x) \cdot 2\left(x^{2}-9\right) \cdot 2 x}{\left(x^{2}-9\right)^{4}-2}
$$

$$
\begin{aligned}
& f(x)=x \cdot e^{-2 x}=\frac{x}{e^{2 x}} \\
& \text { Horiz }=y=0 \\
& \lim _{x \rightarrow+\infty} \frac{x}{e^{2 x}}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow+\infty} \frac{1}{e^{2 x} \cdot 2}=\frac{1}{\infty}=0 \\
& \lim _{x \rightarrow-\infty} \frac{x}{e^{2 x}}=\frac{-\infty}{0}=-\infty \\
& f^{\prime}(x)=x \cdot e^{-2 x} \cdot-2+e^{-2 x} \\
& \left.\partial=e^{-2 x}(-2 x+1)\right\} \\
& \left.\begin{array}{l}
t \cdot+t-x=1 / 2 \\
+\frac{1}{1 / 2}
\end{array}\right\} \\
& \frac{-\operatorname{l}_{1}^{-1}+}{0112} \\
& \rightarrow f^{\prime \prime}(x)=e^{-2 x} \cdot-2+(-2 x+1) \cdot e^{-2 x} \cdot-2 \\
& =-2 e^{-2 x}[1-2 x+1] \\
& \Rightarrow-2 e^{-2 x}(2-2 x) \\
& =4 e^{-2 x}(x-1) \\
& x=1
\end{aligned}
$$

