\qquad

PRECALC JOURNAL

Exponential \& Logarithmic Functions

1. (a) The two major characteristics of an exponential function are \qquad and \qquad .
(b) The base of an exponential function must be \qquad .
2. (a) Once you have the equation of a function typed in $y=$ in a graphing calculator, two ways to substitute a number in the function and find the value are \qquad or \qquad .
(b) To find the value where a function equals a specific number with your calculator, you should
3. (a) The number e was discovered by \qquad and resulted from the formula \qquad .
(b) The value of e to the nearest thousandth is \qquad .
(c) The base of a common logarithm is \qquad while the base of a natural logarithm is \qquad ..
4. (a) A logarithmic function is the \qquad of an exponential function.
(b) In interval notation, the domain of an exponential function is \qquad while the domain of a logarithmic function is \qquad .
(c) The graph of an exponential function always passes through the coordinate \qquad and has a \qquad asymptote, while the graph of a logarithmic function always includes the coordinate \qquad and has a \qquad asymptote.
5. (a) Logarithms were originally developed by \qquad in order to \qquad
\qquad while today the primary purpose of a logarithm in mathematics is to \qquad .
(b) An equation with a logarithm on only one side of the equal sign can be solved by \qquad
\qquad .
(c) Three examples of real world problems that require the use of exponential or logarithmic functions are \qquad
\qquad .
6. (a) When doing curve fitting, the term for r is \qquad , and it describes \qquad .
(b) r^{2} is called the \qquad and it describes \qquad
(c) The two things that must be considered when choosing the best regression function to model a set of data are \qquad and \qquad .
7. (a) The constant value in the numerator of a logistic function is called the \qquad .
(b) On the graph of a logistic function, this value indicates \qquad
\qquad .
8. Important Rules, Formulas, Etc.
a) Relationship between exponential form and logarithmic form.
b) 3 properties of logarithms
c) Draw and label graphs of $y=e^{x}$ and $y=\ln x$. Clearly show all asymptotes and a T-Table of 3 sets of coordinates used to graph each function.

d) Attach the formula sheet for exponential applications.
e) Attach the sheet showing all types of regression, their equations, and graphs.
