ALGEBRA II JOURNAL Exponential & Logarithmic Functions

1.	An exponential function has a constant and a variable
2.	An example of an equation which represents exponential growth is
	while exponential decay can be represented by equations in the form and .
3.	(a) e is called the number because
•	(b) <i>e</i> was discovered by
	(c) The value of <i>e</i> to 6 decimal places is
4.	The relationship between exponential and logarithmic functions is that
5.	Logarithms represent
6.	Provide the following information for the graphs of each of the following functions.
	$y = 9^x \qquad y = \log_9 x$
	(a) Location of the asymptote
	(b) Coordinate that appears in every exp/log function
	(c) Change each equation to make it shift left and down
	(d) Change each equation to make it reflect over the <i>y</i> -axis
	(e) Change each equation to make it reflect over the <i>x</i> -axis
7.	The two special types of logarithms are logarithms which have base and
	logarithms which have base
8.	(a) If a logarithmic equation has a logarithm on both sides of the equal sign, you should
	(b) If a logarithmic equation has a logarithm on only ONE side of the equal sign, you should
9.	The purpose of logarithms in mathematics and the real world is to solve for
10	. To solve a problem like 13 ^{<i>x</i>} = 158 you would
	while you would solve a problem like $27^{x-4} = 9^{2x}$ by
11	. (a) After setting up the equation for a real world application problem in which you need to solve
	for the exponent, the first thing you must do to begin solving the problem is
	(b) The second step is to use if the base is a constant to move the exponent
	if the problem has base <i>e</i> .

- 12. List the following rules, facts, or formulas.
 - a) Show how to change between exponential form and logarithmic form. <u>Exponential form</u> <u>Logarithmic form</u>

b) Three properties of logarithms

- c) List four real world applications of exponential and/or logarithmic functions and describe what they would be used to find in that situation.
 - 1.
 - 2.
 - 3.
 - 4.
- d) Graph $y = 2^x$ and $y = \log_2 x$. Show the T-table of values used to create each graph.

e) Attach the formula sheet for the real world application problems.