Area 2
Find the area vader $y=-x^{2}+4$ and above $y=-x-2$ and $y=3 x-6$.

$$
\int_{-2}^{1}\left[-x^{2}+4-(-x-2)\right] d x
$$



$$
+\int_{1}^{2}\left[-x^{2}+4-(3 x-6)\right] d x=\frac{50}{3} \text { units }{ }^{2}
$$

Find the area between

$$
\begin{aligned}
& \begin{array}{l}
x+y^{2}=4 \\
x=-y^{2}+4 \\
R-L
\end{array} \begin{array}{l}
x-y=-2 \\
x+2=y \\
x=y-2
\end{array} \\
& \int_{-3}^{2}\left[-y^{2}+9-(y-2)\right] d y \\
& =\frac{125}{6} \text { units }^{2}
\end{aligned}
$$



Find area between

$$
\begin{aligned}
& x y=1 \quad \text { and } \quad x+y^{2}=10 . \\
& y=\frac{1}{x} \quad x=-y^{2}+10 \\
& x=\frac{1}{y} \\
& y\left[\frac{1}{y}=-y^{2}+10\right] \\
& 1=-y^{3}+10 y \\
& 0=-y^{3}+10 y-1
\end{aligned}
$$



Graph
intersect int



$$
\begin{aligned}
& 2^{\prime}=2 \quad 2^{x}=3-x \\
& 3-1=2
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}\left(3-x-2^{x}\right) d x \\
& 3 x-\frac{x^{2}}{2}-\left.\frac{1}{\ln 2} 2^{x}\right|_{0} ^{1} \\
& 3-\frac{1}{2}-\frac{1}{\ln 2}-\left(0-0-\frac{1}{\ln 2} \cdot 1\right) \\
& =\frac{5}{2}-\frac{2}{\ln 2}+\frac{1}{\ln 2} \\
& =\frac{5}{2}-\frac{1}{\ln 2}
\end{aligned}
$$

