\qquad

ALGEBRA II JOURNAL
 Rational Functions

1. Rational expressions contain \qquad in the \qquad .
2. If a rational expression contains a quantity such as $2-x$ in the denominator, you should reverse it to $x-2$ by \qquad and then moving
3. (a) An expression such as $x^{2}-16$ is called \qquad and is factored as \qquad .
(b) What catchphrase is used to help factor perfect cubes? \qquad
(1) Factor: $x^{3}-64$
(2) Factor: $8 x^{3}+125$
(c) Expressions with 4 terms are factored by \qquad .
(1) This method requires \qquad steps.
(2) Step 2 is only possible if Step 1 contains \qquad
(3) An expression factored by this method should look like \qquad
4. When adding rational expressions by making a common denominator [such as $\frac{3}{x^{2}(x+5)^{4}}+\frac{7}{x^{3}(x+5)^{2}}$, explain how to determine what power of each variable or quantity is needed in the common denominator? Explain in general, not using the example given. \qquad
5. (a) When simplifying a complex fraction, you must first combine the fractions in the numerator by making \qquad and adding them together into \qquad fraction.
(b) Second, perform the same operations on the fractions in the denominator. These fractions (circle one) [do/do not] have to have the same denominator as the fractions in the numerator.
(c) Next, multiply by the \qquad of the fraction in the denominator.
(d) \qquad all expressions in the numerator and denominator and cancel.
(e) Simplify the remaining expressions by (circle one) [multiplying all remaining expressions together/leaving all remaining expressions as quantities].
6. When a rational expression is simplified the result is usually \qquad
\qquad while the result from solving a rational equation is
7. You can multiply through a rational expression and cancel all of the denominators if the problem (circle one) [contains and = sign/does not contain an = sign], but you must keep the denominators if it (circle one) [contains and $=$ sign/does not contain an $=$ sign].
8. a) The solutions of a rational equation must be checked for \qquad .
b) These values are found by \qquad .
c) Solutions that result from solving the problem, but do not check are called \qquad
9. Write an example equation (using actual numbers) to cause each of the following transformations to occur to the graph of $f(x)=\frac{1}{x^{2}}$. Your examples should not be identical to those of another student!
a) Reflect over the x-axis and move left.
b) Move right and up.
c) Stretch vertically (pass through (1,a)) and move down.
10. List the following rules, facts, or formulas.
a) Formula relating distance, rate, and time
b) Graphs of $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$. Show a T-table for each.
