ALGEBRA II JOURNAL Rational Functions

1.	Rational expressions contain in the
2.	If a rational expression contains a quantity such as $2 - x$ in the denominator, you should reverse
	it to <i>x</i> – 2 by and then moving
3.	(a) An expression such as $x^2 - 16$ is called
	and is factored as
	(b) What catchphrase is used to help factor perfect cubes?
	(1) Factor: $x^3 - 64$
	(2) Factor: $8x^3 + 125$
	(c) Expressions with 4 terms are factored by
	(1) This method requires steps.
	(2) Step 2 is only possible if Step 1 contains
	(3) An expression factored by this method should look like
4.	When adding rational expressions by making a common denominator $\left[such as \frac{3}{x^2(x+5)^4} + \frac{7}{x^3(x+5)^2}\right]$, explain how to determine what power of each variable or quantity is needed in the common
	denominator? Explain in general, not using the example given
5.	(a) When simplifying a complex fraction, you must first combine the fractions in the numerator
	by making fraction.
	(b) Second, perform the same operations on the fractions in the denominator. These fractions
	(circle one) [do/do not] have to have the same denominator as the fractions in the numerator.
	(c) Next, multiply by the of the fraction in the denominator.
	(d) all expressions in the numerator and denominator and cancel.
	(e) Simplify the remaining expressions by (circle one) [multiplying all remaining expressions
	together/leaving all remaining expressions as quantities].
6.	When a rational expression is <u>simplified</u> the result is usually
	while the result from <i>solving</i> a rational equation is

7. You can multiply through a rational expression and *cancel* all of the denominators if the problem *(circle one)* [contains and = sign/does not contain an = sign], but you must <u>keep</u> the denominators if it *(circle one)* [contains and = sign/does not contain an = sign].

- 8. a) The solutions of a rational <u>equation</u> must be checked for ______
 - b) These values are found by _____
 - c) Solutions that result from solving the problem, but do not check are called ______
- 9. Write an example equation (*using actual numbers*) to cause each of the following transformations to occur to the graph of $f(x) = \frac{1}{x^2}$. Your examples should not be identical to those of another student!
 - a) Reflect over the *x*-axis and move left. _____
 - b) Move right and up._____
 - c) Stretch vertically (pass through (1,a)) and move down. _____

10. List the following rules, facts, or formulas.

- a) Formula relating distance, rate, and time
- b) Graphs of $f(x) = \frac{1}{x}$ and $f(x) = \frac{1}{x^2}$. Show a T-table for each.