More Derivatives

$$
\begin{aligned}
& f(x)=3 x^{7} \cdot 5 x^{4}=15 x^{11} \quad f^{\prime}(x)=165 x^{10} \\
& \text { PRODUCT RULE } \begin{array}{r}
f^{\prime}(x)=3 x^{7} \cdot 20 x^{3}+5 x^{4} \cdot 21 x^{6} \\
60 x^{10}+105 x^{10}
\end{array} \\
& \frac{d}{d x} f \cdot g=f \cdot g^{\prime}+g \cdot f^{\prime} \\
& 60 x^{10}+105 x^{10} \\
& =165 x^{10} \mathrm{~L} \\
& \text { dst d'2nd }+2 \text { nd } \cdot d^{\prime} \mid s t \\
& \frac{7 x^{-2 / 5^{-1}}}{7} \\
& f(x)=\left(7 x^{5}+3 x^{8}-2\right)\left(8 x-\frac{7}{\sqrt[5]{x^{2}}}+9\right) \\
& f^{\prime}(x)=\left(7 x^{5}+3 x^{8}-2\right)\left(8+\frac{14}{5} x^{-7 / 5}\right)+\left(8 x-\frac{7}{\sqrt[3]{x^{2}}}+9\right)\left(35 x^{4}+24 x^{7}\right)
\end{aligned}
$$

Quotient RuLE

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}=\frac{10 w \cdot d^{\prime} h i g h-h i g h \cdot d^{\prime} / 0 w}{10 w^{2}} \\
& f(x)=\frac{x^{4}-7 x^{3}+8}{2 x^{5}-17 x^{2}} \\
& f^{\prime}(x)=\frac{\left(2 x^{5}-17 x^{2}\right) \cdot\left(7 x^{3}-21 x^{2}\right)-\left(x^{4}-7 x^{3}+8\right)\left(10 x^{4}-34 x\right)}{\left(2 x^{5}-17 x^{2}\right)^{2}}
\end{aligned}
$$

CHAIN RULE $=$ for functions inside functions

$$
\begin{aligned}
& \frac{d}{d x}(f[g(h(x))])=f^{\prime}[g(h(x))] \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& f(x)=\left(x^{2}-7 x+3\right)^{8} \quad \begin{array}{l}
f(x)=x^{8} \\
g(x)=x^{2}-7 x+3
\end{array} \\
& f^{\prime}(x)=8\left(x^{2}-7 x+3\right)^{7} \cdot(2 x-7)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{\left(x^{5}-9 x^{8}+7\right)\left(3 x^{2}-5 x^{5}\right)^{4}}{\left(x^{9}-3\right)^{47}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\left(x^{5}-4 x^{8}+7\right)\left(3 x^{2}-5 x^{5}\right)^{4} \cdot 47\left(x^{9}-3\right)^{46} \cdot\left(9 x^{8}\right)}{\left[\left(x^{9}-3\right)^{47}\right]^{2}} \\
& f(x)=\left[\sin ^{8}\left(x^{2}-\sqrt{x+4}\right)^{7}\right]^{8}
\end{aligned}
$$

