43/

$$
\begin{aligned}
& \lim _{x \rightarrow b} \frac{(x-b)^{50}-x+b}{x-b}=\frac{0}{0} \\
& \lim _{x \rightarrow b} \frac{(x-b)^{-56}-(x-b)}{x-b} \\
& \lim _{x \rightarrow b} \frac{(x-b)^{49}-1}{1}=\frac{0-1}{1}=-1
\end{aligned}
$$

45

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{(2 x-1)^{2}-9}{x+1}=\frac{(-3)^{2}-9}{-1+1}=\frac{0}{0} \\
& \lim _{x \rightarrow-1} \frac{(2 x-1+3)(2 x-1-3)}{x+1} \quad \begin{array}{l}
x^{2}-4 \\
(x+2)(x-2)
\end{array} \\
& \lim _{x \rightarrow-1} \frac{(2(x+1)(2 x-4)}{x+1} \\
& =2(-2-4) \\
& =-12
\end{aligned}
$$

28

$$
\begin{aligned}
& f(1)=0 \quad f(3)=6 \\
& f(2)=4 \\
& \lim _{x \rightarrow 2^{-}} f(x)=-3 \\
& \lim _{x \rightarrow 2^{+}} f(x)=5
\end{aligned}
$$

3) $p(0)=2$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} p(x)=0 \\
& \lim _{x \rightarrow 2} p(x)=D N E \\
& p(2)=\lim _{x \rightarrow 2^{+}} p(x)=1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{-3 x}{x^{2}-16}=\frac{12}{0}=\text { ONE } \\
& \lim _{x \rightarrow 4^{-}} \frac{3 x}{x^{2}-16}=\frac{t}{-}=-\infty \\
& \lim _{x \rightarrow 4^{+}} \frac{3 x}{x^{2}-16}=\frac{+}{+}=+\infty \\
& \lim _{x \rightarrow-7^{+}} \frac{3 x-11}{x+7}=\frac{-32}{0}=\frac{-}{+} \lim _{x \rightarrow 2^{-}} \frac{5-x}{x^{2}+2 x}=\frac{3}{8}
\end{aligned}
$$

$$
\lim _{x \rightarrow 6^{-}} \sqrt{x-6}=\sqrt{0}=\theta \text { DNE }
$$

$$
f(x)= \begin{cases}x^{2}-3 & x<2 \\ 4 x+7 & x=2 \\ \frac{2}{x-2} & x>2\end{cases}
$$

$$
\lim _{x \rightarrow 2} f(x)=D N \varepsilon
$$

$$
\lim _{x \rightarrow 2^{-}} x^{2}-3=1
$$

$$
\lim _{x \rightarrow 2^{+}} \frac{2}{x-2^{2}}=\frac{2}{0}=\frac{t}{4}=+\infty
$$

$$
\begin{aligned}
& L \text { Lmits To } \pm \infty \\
& \lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}} x^{2}}{\frac{1}{x^{2}} 7 x^{2}+3}=\frac{\infty^{2}}{7 \cdot \infty^{2}+3}=\frac{\infty}{\infty} \\
& -\frac{1}{-10}-\frac{1}{100} \quad \frac{1}{7000} \quad \frac{1}{-10000000} \\
& \lim _{x \rightarrow \infty} \frac{1}{7+\frac{3}{x^{2}}}=\frac{1}{7+\frac{3}{0^{2}}}=\frac{1}{7} \\
& 0.1 \quad 0.01 \quad 0.001 \quad 0.80011 \\
& \frac{1}{\infty}=0 \\
& \lim _{x \rightarrow-\infty} \frac{4 x^{3}-3 x^{2}+1}{5 x^{4}+2 x^{2}-9} \\
& \lim _{x \rightarrow-\infty} \frac{4 x^{5}}{5 x^{x}}=\lim _{x \rightarrow-\infty} \frac{4}{5 x}=\frac{4}{-\infty}=0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{y \rightarrow-\infty} \frac{5 y^{3}+4}{3 y+7}=\lim _{y \rightarrow-\infty} \frac{5 y^{32}}{3 y}=\lim _{y \rightarrow-\infty} \frac{5 y^{2}}{3}=\frac{5}{3}(-\infty)^{2}=+\infty \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+3}}{6 x+5}=\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x^{2}}}{6 x}=\lim _{x \rightarrow-\infty} \frac{|x|}{6 x} \\
& =\lim _{x \rightarrow-\infty} \frac{-x x}{6 x}=-\frac{1}{6} \\
& \begin{array}{l}
\text { Even-Even-0dd} \\
\text { index iaiside outsid } \\
\sqrt{2}_{4}^{a^{4} b^{6} c^{5}}=a^{2}\left(b^{3} c^{2} \sqrt{c^{1}}\right.
\end{array} \\
& \lim _{z \rightarrow-\infty}=-3 z^{2} 7 z=-3(-\infty)^{2}=-3 \cdot+\infty=-\infty
\end{aligned}
$$

