Asymptotes
6

$$
p(x)=\frac{x^{6}+x^{3}-4}{1+2 x^{4}}
$$

Vertical

$$
\begin{aligned}
1+2 x^{4}=0 & \text { Hor, } 2 \\
\frac{2 x^{4}}{}=\frac{-1}{2} & \lim _{x \rightarrow \infty} \frac{x^{6} 6^{2}}{2 x^{4}}=\lim _{x \rightarrow \infty} \frac{1 x^{2}}{2} \\
\sqrt[4]{x^{4}}=\sqrt[4]{-\frac{1}{2}} & =\frac{\infty}{2}=\infty
\end{aligned}
$$

None

$$
7 f(x)=\frac{1-6 x^{2}}{\sqrt[3]{x^{7}-1}}
$$

Vertical $\quad x^{9}-1=0$

$$
\begin{gathered}
\lim _{x \rightarrow 1^{+}} \frac{1-6 x^{2}}{\sqrt[3]{x^{2}-1}}=\frac{5}{0} \quad x_{x=1}^{9}=1 \\
=\frac{-}{t}=-\infty \\
x=1
\end{gathered}
$$

Horiz

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{-6 x^{2}}{\sqrt[3]{x^{1}}} \\
& \lim _{x \rightarrow \infty} \frac{-6 x^{2}}{x^{2}}=\frac{-6}{\infty}=0 \\
& y=0
\end{aligned}
$$

$$
\text { 6/ } g(x)=\frac{x+6}{x^{2}-36}
$$

$$
(-\infty, 4]
$$

$$
x=-6,6
$$

$7 l h(x)=\frac{4 x-3}{16 x^{2}-9}$

$$
(-3 / 4, \infty)
$$

$$
\begin{aligned}
16 x^{2}-9 & =0 \\
16 x^{2} & =9 \\
\sqrt{x^{2}} & =\sqrt{\frac{19}{16}} \\
x & = \pm 3 / 4
\end{aligned}
$$

$$
8 \quad K(x)=\frac{x}{\sqrt{3-x}}
$$

1) $f()=\#$

2) $\lim _{x \rightarrow-}$
3) $f(x)=\lim _{x \rightarrow}$

Limits

1) Graph-Give y-coord.
2)

$$
\begin{array}{ll}
\lim _{x \rightarrow 5} \frac{3 x}{10-2 x}=\frac{15}{0} & \lim _{x \rightarrow 5^{-}} \frac{3 x}{10-2 x}=\frac{15}{0} \\
\lim _{x \rightarrow 5^{-}} \frac{3 x}{10-2 x}=\frac{t}{f}=+\infty & =\frac{t}{t}=+\infty \\
\lim _{x \rightarrow 5^{+}} \frac{3 x}{10-2 x}= \pm=-\infty
\end{array}
$$

3)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+3}}{5-x}=\lim _{x \rightarrow-\infty} \frac{\sqrt[2]{x^{2}}}{-x} & =\lim _{x \rightarrow-\infty} \frac{|x|}{-x} \\
& =\lim _{x \rightarrow-\infty} \frac{-x}{-x}=1
\end{aligned}
$$

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin n x}{n x}=1 & \lim _{x \rightarrow 0} \frac{1-\cos n x}{n x}=0 \\
\lim _{x \rightarrow \infty} e^{x}=+\infty & \lim _{x \rightarrow \infty} \ln x=+\infty \\
\lim _{x \rightarrow-\infty} e^{x}=0 & \lim _{x \rightarrow 0^{+}} \ln x=-\infty
\end{array}
$$

