$\qquad$

## ALGEBRA II JOURNAL Systems of Equations

1. Complete the following table:

| Situation | Slopes/Intercepts | Number of Solutions |
| :--- | :---: | :---: |
| Same line |  |  |
| Intersecting lines |  |  |
| Parallel lines |  |  |

2. The 5 methods for solving a system of linear equations are:
a)
b)
c)
d)
e)
3. To solve a system of two equations with your calculator you must:
a)
b)
4. When using substitution to solve a system of equations, the best variable to isolate is the variable with $\qquad$ .
5. a) An equation with two variables to the first power represents $\qquad$ .
b) An equation with 3 variables to the first power represents $\qquad$ .
b) When you solve a system of equations with 2 variables and find the answer to be a single point $(x, y)$, that point represents where $\qquad$
c) When you solve a system of equations with 3 variables and find the answer to be a single point $(x, y, z)$, that point represents where $\qquad$
6. a) The two visual differences between a determinant and a matrix are $\qquad$
$\qquad$ and $\qquad$ .
b) The result of calculating a determinant is $\qquad$ .
7. The best method to use to solve a system of equations containing 4 or more equations with 4 or more variables is $\qquad$ .
8. The solutions to a system of inequalities are found by $\qquad$
$\qquad$ .
9. a) The purpose of linear programming is $\qquad$

b) In linear programming, the graph of the inequalities will form a $\qquad$ and the possible solutions will be located at $\qquad$ .
c) You can determine which information to use when writing the function of a linear programming problem by $\qquad$ .
d) The two inequalities which are automatically included in most linear programming word problems are $\qquad$
10. List the following rules, facts, or formulas.
a) Formula for finding the value of a $2 \times 2$ determinant
$\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=$
b) Set up the determinants for solving a 3-variable system of equations using Cramer's Rule. Show the setup for solving for $x, y$, and $z$.

c) Show the first line of how to find the value of the following $3 \times 3$ determinant by hand.
$\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|$
d) Formula for finding an inverse matrix given $[A]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
