\qquad
ALGEBRA II JOURNAL Square Roots \& Complex Numbers

1. When multiplying or dividing square roots, they may contain \qquad values. When adding or subtracting square roots, they must contain \qquad values.
2. (a) If the denominator of a fraction contains a single square root, it can be moved to the numerator by \qquad
(b) If the denominator of a fraction contains a square root plus another number $(a+\sqrt{b})$, it can be moved to the numerator by multiplying by \qquad which is called the \qquad .
(c) When a square root is moved from the denominator of a fraction to the numerator, the process is called \qquad .
3. When solving an equation like $x^{2}=81$, you must \qquad and remember to add \qquad to your answer.
4. Numbers that result from the square roots of negative numbers are called \qquad numbers.
5. Complex numbers earn this name because they have two parts: \qquad and \qquad .
6. ALL numbers are \qquad numbers.
7. The value of i to a very large power can be found by \qquad
\qquad .
8. Before performing any arithmetic operation $(+,-, x, /)$ between the square roots of two negative numbers, you must first \qquad
9. If a fraction has only $4 i$ in the denominator, you would move it to the numerator by \qquad
\qquad
10. If a fraction has $2+5 i$ in the denominator, you would move it to the numerator by \qquad .
11. (a) The Mandelbrot Set is an example of a \qquad whose primary characteristic is \qquad .
(b) The Mandelbrot Set is created on a coordinate axis in which the x-axis is the \qquad axis and the y-axis is the \qquad axis.
(c) The Mandelbrot Set is created with the function $f(x)=$ \qquad through the process of iteration.
(d) Show 3 iterations of the function $f(x)=x^{2}-10$ beginning at $x=$ the last digit of your calculator number. (Example: If your calculator number is NC95, iterate using $x=5$.)
12. Important Rules, Formulas, Etc.
a) $i=$
b) List the 4 powers of i and the saying for how to remember them.
