Derivatives of $\ln x_{1} \log _{2} x_{1} e_{1}^{x} a_{1}^{x}+x^{x}$

$$
\begin{aligned}
& f(x)=e^{x} \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned} x^{?} \cdot x^{3}=x^{5}, ~ \frac{d}{d x} e^{x}=e^{x} .
$$

$$
\begin{aligned}
& \operatorname{Fnd} \frac{d y}{d x} \\
& y=a^{x} \\
& \ln y=\ln a^{x} \\
& \ln y=x \cdot \ln a \\
& \frac{1}{y} \frac{d y}{d x}=\ln a \\
& \frac{d y}{d x}=y \cdot \ln a \\
& =a^{x} \cdot \ln a \\
& \frac{d}{d x} a^{x}=\ln a \cdot a^{x}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =5^{x^{2}} \\
f^{\prime}(x) & =\ln 5 \cdot 5^{x^{2}} \cdot 2 x \\
f(x) & =14^{\cos x} \\
f^{\prime}(x) & =\ln 14 \cdot 14^{\cos x} \cdot-\sin x \\
& =-\ln 14 \cdot 14^{\cos x} \sin x \\
f(x) & =e^{2 x^{7}} \\
& =\ln \cdot e^{2 x^{7}} \cdot 14 x^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \ln (x)=\frac{1}{x} \\
& \begin{aligned}
f(x) & =\ln \left(x^{3}-4 x^{5}\right) \\
f^{\prime}(x)=\frac{1}{x^{3}-4 x^{3}} \cdot\left(3 x^{2}-20 x^{4}\right) & =\frac{3 x^{2}-20 x^{9}}{x^{3}-4 x^{5}} \\
& =\frac{x^{2}\left(3-20 x^{2}\right)}{x^{2}\left(x-4 x^{3}\right)}
\end{aligned} \\
& f(x)=x^{3} \sec \left(\ln x^{2}\right) \\
& f^{\prime}(x)=x^{3} \cdot \sec \left(\ln x^{2}\right) \tan \left(\ln x^{2}\right) \cdot \frac{1}{x^{5}} \cdot 2 x+\sec \left(\ln x^{2}\right) \cdot 3 x^{2}
\end{aligned}
$$

$$
\begin{array}{rlr}
f(x) & =\log _{8} 3 x^{7} & \\
\begin{aligned}
f(x) & =\frac{\ln 3 x^{7}}{\ln 8}=\frac{1}{\ln 8} \cdot \ln 3 x^{7} \\
f^{\prime}(x) & =\frac{1}{\ln 8} \cdot \frac{1}{\partial x^{71}} \cdot 24 x^{8} \\
& =\frac{7}{\ln 8} \cdot \frac{1}{x}
\end{aligned} & \log _{b} a=\frac{\ln a}{\ln b} \\
\text { Formula }
\end{array}
$$

$$
\begin{aligned}
f(x) & =x^{x^{2}} \cdot \ln x \\
& =e^{x^{2}} \\
& =e^{x^{2} \cdot \ln x} \\
f^{\prime}(x) & =e^{x^{2} \cdot \ln x} \cdot\left[x^{2} \cdot \frac{1}{x}+\ln x \cdot 2 x\right] \\
& =x^{x^{2} \cdot[x+2 x \ln x]} \\
& =x^{\prime} \cdot x^{x^{2}}[1+2 \ln x] \\
& =x^{x^{2}+1}[1+2 \ln x] \\
f(x) & =x^{\cos x}=e^{\ln x}=e^{\cos x} \cos x \cdot \ln x \\
f^{\prime}(x) & =e^{\cos x \cdot \ln x} \cdot\left[\cos x \cdot \frac{1}{x}+\ln x \cdot-\sin x\right] \\
& =x^{\cos x}\left[\frac{\cos x}{x}-\frac{x \cdot \ln x \sin x}{x-1}\right] \\
& =x^{\cos x}\left[\frac{\cos x-x \ln x \sin x}{x}\right] \\
& =\frac{x^{\cos x}}{x^{\prime}}[\cos x-x \ln x \sin x] \\
& =x^{\cos x-1}[\cos x-x \ln x \sin x]
\end{aligned}
$$

