Exfonential Fonctions

$$
\begin{array}{ll}
\frac{\left(a^{2} b^{3}\right)\left(a^{-5} b^{2}\right)^{3}}{a^{-4} b^{2}} \\
\frac{\left(a^{2} b^{3}\right)\left(a^{-15} b^{6}\right)}{a^{-4} b^{2}} & \sqrt{\sqrt[5]{a^{2}}=a^{2 / 5}} \\
\left(4^{-3 / 2}+2^{-1}\right)^{-1} \\
\frac{\left.a^{-15}\right)^{9-2}}{a^{-4+4 / 2}} & \left(\frac{1}{\sqrt{4^{2}}}+\frac{1}{2}\right)^{-1} \\
\frac{b^{7}}{a^{9}} & \left(\frac{1}{8}+\frac{1}{2}\right)^{-1} \\
\left(\frac{5}{8}\right)^{-1} \\
& =\frac{8}{5}
\end{array}
$$

Exponential Functions - constant base

$$
\begin{aligned}
& \begin{array}{l}
y=2^{x} \\
y=b^{x} \\
b>0, b \neq 1 \\
\text { Domain: }(-\infty, \infty) \\
\text { Range: } y>0 \quad(0, \infty)
\end{array}\left\{\begin{array}{l}
\left(\frac{1}{9}\right)^{3 x}=(\sqrt[4]{27})^{x+3} \\
\left(3^{-2}\right)^{3 x}=\left(\sqrt[4]{3^{3}}\right)^{x+3} \\
3^{-6 x}=\left(3^{3 / 4}\right)^{x+3} \\
3^{-6 x}=3^{\frac{3 / 4}{4} x+9 / 4} \\
\left.-6 x=\frac{3}{4} x+\frac{9}{4}\right] \\
-6 \\
-24 x=3 x+9 \\
\frac{-27 x}{-27}=\frac{9}{-27} \\
x=-1 / 3
\end{array}\right.
\end{aligned}
$$ variable exponent

$$
e=\left(1+\frac{1}{n}\right)^{n} \simeq 2.718 \quad \frac{\text { Leonard Euler }}{\text { Nature number }}
$$

$$
\begin{array}{ll}
n=1 & 2 \\
n=2 & 2.25
\end{array}
$$

$$
\left.\begin{array}{lll}
n=2 & 2.37 \\
n=3 & 2.37
\end{array}\right)
$$

$$
\left.\begin{array}{ll}
n=3 \\
n=4 & 2.95
\end{array}\right)
$$

Expunential Growith

$$
N=N_{0}(1 \pm r) t
$$

Fimal Toninal Ame

Natural Growth

$$
q=q_{0} e^{K t}
$$

$$
\begin{aligned}
& \text { Compound laterest time } \\
& A=P\left(1+\frac{r}{n}\right)^{n} t^{2} \text { inferget } \\
& \hat{r}_{n}
\end{aligned}
$$

Find primest it in timas compouncal in a year
Compounded Continuovsly

$$
\begin{aligned}
& A=P\left(1+\frac{r}{\infty}\right)^{-t t} \\
& A=P e^{r t}
\end{aligned}
$$

Culture of Bacterin

$$
K=0.42
$$

20 bactria now How many will there be in 12 hrs ?

$$
\begin{aligned}
q & =q_{0} \cdot e^{K t} \\
q & =20 \cdot e^{0.42 \cdot 12)} \\
& =3089 \text { backica }
\end{aligned}
$$

When will there be 5000 bacteria?

To sub in x-cord

1) Use Table
2.) \qquad
