Forms of Quadratics
Vertex Form

$$
y=a(x-h)^{2}+K
$$

Vertex: (h, k)
Line of symn: $x=h$
Direction: ta op

- a down

Wed th: $|a|>1$ narrow (section

$$
\begin{align*}
& |a|=1 \text { norma) } \\
& \begin{array}{l}
|a|=1 \text { norma) } \\
0<|a| 4 \text { wide (ort (rand }
\end{array} \\
& y=5\left(x^{2}-3 x-3 x+9\right)+1 \\
& y=5 x^{2}-30 x+95+1 \\
& y=5_{a} x^{2}-30 x+46 \tag{3,1}\\
& x=\frac{-6}{2 a}=\frac{+30}{2(5)}=3 \\
& \begin{array}{c}
y=5(3)^{2}-30(3)+46 \\
45-90+46
\end{array} \\
& 45-90+46 \\
& =1
\end{align*}
$$

Standard For

$$
y=a x^{2}+b x+c
$$

Vertex:

$$
\begin{align*}
& x=\frac{-b}{2 a} \\
& y=\operatorname{sub} \text { in } x-\cos d, \\
& y=5(x-3)^{2}+1 \tag{3,1}
\end{align*}
$$

$$
y=5(x-3)(x-3)+1
$$

$(3,1)$

$$
\begin{aligned}
& y=-\frac{1}{2} x^{2}+6 x-15 \\
& x=\frac{-b}{2 a}=\frac{-6}{2}\left(-\frac{1}{2}\right)=6^{3} \\
& y=-\frac{1}{2}(6)^{2}+6(6)-15 \\
& =-18+36-15=3 \\
& \text { Vertex: }(6,3) \\
& \text { Line of syn? } x=6 \\
& \text { Direction: Down } \\
& \text { Width: Wide }
\end{aligned}
$$

$$
y \leq-2(x+1)(x-3)
$$

1) Find x-intercepts:

$$
\begin{array}{cc}
x+1=0 & x-3=0 \\
x=-1 & x=3
\end{array}
$$

2) Find vertex x

$$
\begin{aligned}
x-\text { cord } & =\frac{-1+3}{2}=\frac{2}{2}=1 \\
y-\text { coors } & =-2(1+1)(1-3) \\
& =-2 \cdot 2 \cdot-2 \\
& =8 \\
\operatorname{vertax}(1: 8) & v-1
\end{aligned}
$$

Line of Sym: $x=1$
Direction: Down
Width: narrow

Intercept Form \leftarrow Gives x-intercepts

$$
\begin{array}{lr}
y=a(x-p)(x-q) & \text { Vertex: } \\
x-p=0 \quad x-q=0 & x=\frac{p+q}{2} \\
x=\underbrace{}_{x-\text { intercepts }} x=q & y=\text { sub in } x \text {-cord. }
\end{array}
$$

1972 Mercury Comet $\$ 3000$

$$
V(t)=18.75 t^{2}-450 t+3200
$$

$t=\nRightarrow \partial f$
years after

1) Find vertex 1972

$$
t=\frac{-b}{2 a}=\frac{450}{2(18.75)}=\frac{450}{37.5}=12 \mathrm{yrs}
$$

Find max or min. =

$$
1972+12=1984
$$

Find vert x.

$$
\begin{aligned}
V(12) & =18.75(12)^{2}-450(12)+3200 \\
& =\$ 500
\end{aligned}
$$

$\mathrm{mm}, 2)$

$$
\begin{aligned}
& \text { How much is it worth today? } 2021 \\
& \begin{array}{r}
\frac{-1972}{49} \\
V(49)=18.75(49)^{2}-450(19)+3200
\end{array}
\end{aligned}
$$

