LOGARITHMS - inverses of exponential


Common Logs

$$
\log _{10} x=\log x
$$



$$
\begin{aligned}
& \log _{9} 81=\log _{9} 9^{2}=2 \\
& \log _{6} \frac{1}{36}=\log _{6} 6^{-2}=-2 \\
& \log _{7} \sqrt[5]{49}=\log _{7} \sqrt[3]{7^{2}}=\log _{7} 7^{2 / 5}=\frac{2}{5} \\
& \log _{10} 1000=\log _{10} 10^{3}=3 \\
& \ln e^{3178}=3178 \\
& \ln \frac{1}{\sqrt[3]{e^{3}}}=\ln e^{-3 / 2}=-3 / 2 \\
& e^{\ln 56}=56 \\
& e^{2 \ln 8^{2}}=e^{\ln 8^{2}}=64
\end{aligned}
$$

Solving Log Equations Properties of Logs

$$
\log _{b} n+\log _{b} n=\log _{b}(n \cdot n)
$$

$$
\log _{b} m-\log _{b} n=\log _{b}\left(\frac{x}{n}\right)
$$

$$
\log _{b} m^{p}=p \cdot \log _{b} m
$$

$$
\begin{aligned}
\log _{4} 8 & =x \\
4^{\log _{4} 8} & =4^{x} \\
8 & =4^{x} \\
2^{3} & =2^{2 x} \\
3 & =2 x \\
3 / 2 & =x
\end{aligned}
$$

$$
\begin{array}{r}
x^{\log _{x} 64}=3 \\
\sqrt[3]{64} \sqrt[3]{x^{3}} \\
4=x
\end{array}
$$

$$
\begin{aligned}
& \log _{7}(x-2)+\log _{7}(2 x-3)=2 \log _{7} x \\
& \begin{array}{l}
\log _{7}\left(2 x^{2}-7 x+6\right)=7^{\log _{7} x^{2} \quad \log x-\log 2=3} \\
\log ^{2}\left(\frac{x}{2}\right)=3
\end{array} \\
& \begin{aligned}
& 2 x^{2}-7 x+6=x^{2} \\
&-x^{2}
\end{aligned} \quad 10^{\log \left(\frac{x}{2}\right)}=10^{3} \\
& x^{2}-2 x+6=0 \\
& (x-1)(x-6)=0 \\
& x=x .6 \\
& \frac{x}{2}=1000 \\
& x=2000
\end{aligned}
$$

