Curve Stestentang
Mean Value Theorem

1) f is continuous on $[a, b]$
2) f is differentiable on (a, b)
3) $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+2 x \quad[0,2] \\
& f^{\prime}(x)=3 x^{2}-6 x+2 \\
& 3 c^{2}-6 c+2=\frac{f(2)-f(0)}{2-0}
\end{aligned}
$$

$$
3 c^{2}-6 c+2=\frac{0-0}{2-0}
$$

$$
3 c^{2}-6 c+2=0
$$

$$
c=\frac{6 \pm \sqrt{36-4(3)(6)}}{2(3)}
$$

$$
=\frac{6 \pm \sqrt{12}}{6}
$$

$$
c=\frac{6 \pm 2 \sqrt{3}}{6}=\frac{3 \pm \sqrt{3}}{3}
$$

$$
c \approx{ }_{0.6}^{1.6}<b_{\text {at }}+\frac{1}{c} t
$$

$$
C=\frac{3+\sqrt{3}}{3} \text { or } \frac{3-\sqrt{3}}{3}
$$

$$
f(x)=x^{4}-4 x^{3}+10
$$

CRTT P75

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-12 x^{2}=0 \\
4 x^{2}(x-3)=0 \\
x=0 \quad x=3 \\
+\cdots,+-++ \\
\hline-1: 0: 34
\end{gathered}
$$

Inc $(3, \infty)$
$\operatorname{Dec}(-\infty, 0)(0,3)$

$$
f^{\prime \prime}(x)=12 x^{2}-24 x=0
$$

Possible $12 x(x-2)=0$ infl| $\underset{\sim+s .}{ } \quad x=0 \quad x=2$

