$$
\begin{aligned}
& \text { 45/ } \\
& \text {, < } \quad \underset{x=100}{ } \quad \tan \theta=\frac{x}{50} \\
& \sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{\operatorname{so}} \frac{d x}{d t} \\
& \left(5 \frac{0 \sqrt{5}}{80}\right)^{2}(0.75)=\frac{1}{50} \frac{d x}{d t} \\
& 3.75=\frac{1}{50} \frac{d x}{d t} \\
& 187.5 \frac{\mathrm{ft}}{\mathrm{~s}}=\frac{d x}{d t} \\
& \sqrt{12500}=\sqrt{r^{2}} \\
& 125-100 \\
& 10 \sqrt{125}=r \\
& 50 \sqrt{5}=r \\
& \tan a=\frac{x}{100} \\
& \sec ^{2} \alpha \frac{d \alpha}{d t}=\frac{1}{100} \frac{d x}{d t} \\
& \left(\frac{100 \sqrt{2}}{100}\right)^{2} \frac{d \alpha}{d t}=\frac{1}{100} \cdot 187.5 \\
& 2 \frac{d \alpha}{d t}=1.875 \\
& \frac{d \alpha}{d t}=0.938 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$



$$
\begin{aligned}
& \text { 准 } \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{8 \pi}{60}=\frac{2 \pi}{15} \\
& 500 \mathrm{~m} \\
& \tan \theta=\frac{x}{500} \\
& \sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{500} \frac{d x}{d t} \\
& \left(\frac{100 \sqrt{29}}{500}\right)^{2}\left(-\frac{2 \pi}{15}\right)=\frac{1}{500} \frac{d x}{d t} \\
& \begin{array}{c}
200^{2}+500^{2}=r^{2} \\
40000+250000=r^{2}
\end{array} \\
& \sqrt{290,000}=r^{2} \\
& 100 \sqrt{29} \\
& 500 \cdot \frac{29}{25} \cdot \frac{2 \pi}{15}=\frac{1}{500} \frac{d x}{d t} \\
& -\frac{232}{3} \pi \frac{m}{s^{e c}}=\frac{d x}{d t}
\end{aligned}
$$

