Quadratic Functions

$$
\begin{array}{l|l}
y=a(x-h)^{2}+k & y=a x^{2}+b x+c \\
\text { vertex: }(h, K) & x=-\frac{b}{2 a} \\
y=\text { sub in } x
\end{array}
$$

$$
\begin{gathered}
y=a(x-p)(x-q) \\
x-p=0 \quad x-q=0 \\
x \rightarrow x=p \quad x=q \\
\text { Vert } x: x=\frac{p+q}{2} \\
y=\sin \text { in } x
\end{gathered}
$$

Direction +a up
Line of Sym: $\quad x=x$-cosec of
Width: $|a|>1$ narrow al $=1$ normal
$0<a)(1)$ o<|a|c| width

Whe 3(b)
Vertx: $(-8,2)$
Pont: $\left(-\frac{x}{x}, 10\right)$

$$
\begin{aligned}
& y=a(x+8)^{2}+2 \\
& 10=a(-b+8)^{2}+2 \\
& 10=4 a+2 \\
& 8=4 a \\
& 2=a \quad y=2(x+8)^{2}+2
\end{aligned}
$$

Solve by factoring

$$
4 x^{2}-81=0
$$

$$
(2 x+9)(2 x-9)=0
$$

$$
2 x+9=0
$$

$$
\begin{aligned}
2 x-9 & =0 \\
2 x & =9
\end{aligned}
$$

$$
2 x=1
$$

$$
2 x=9
$$

$$
x=\frac{i}{2}
$$

$$
x=9 / 2
$$

$\begin{aligned} 10 n^{2}=50 n & \text { Pull } \\ 10 n^{2}-50 n=0 & \text { poun } \\ 10 n(n-5)=0 & \end{aligned}$

$$
\frac{10 n}{10}=\frac{0}{10} \quad n-5=0
$$

$$
n=0 \quad n=5
$$

Completing the Square

$$
\begin{aligned}
& \frac{5 x^{2}}{5}+\frac{90 x}{5}-\frac{15}{5}=\frac{0}{5} \\
& x^{2}+8 x-3=0 \\
& x^{2}+8 x+16=3+16 \\
& +y \\
& \sqrt{(x+4)^{2}}=\sqrt{9} \\
& x+4= \pm \sqrt{19} \\
& x=-45 \sqrt{19}
\end{aligned}
$$

Formulas to know, Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-\operatorname{sac}}}{2 a}
$$

Projectile Motion

$$
\begin{gathered}
h(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0} . \\
a=-\frac{98}{\mathrm{~m} / \mathrm{s}^{2}} \\
a=-32 \mathrm{ft} / \mathrm{s}^{2}
\end{gathered}
$$

Y/ Solve eq. on calculator
\Rightarrow Graph page

$$
f_{1}(x)=
$$

\qquad

Given roots: $-\frac{3}{7}, 4$ Find eq. (Reverse $\begin{aligned} & \text { Ractorn9 } \\ & \text { far }\end{aligned}$

$$
\begin{array}{ll}
x=-\frac{3}{7} & x=4 \\
7 x=-3 & x-4=0 \\
7 x+3=0 & \\
(7 x+3)(x-4)=0 \\
7 x^{2}-28 x+3 x-12=0 \\
7 x^{2}-25 x-12=0
\end{array}
$$

