$\left[\begin{array}{r}2 x+4 y-7 z=7 \\ -x-5 y+3 z=-4 \\ 4 x+y-2 z=12\end{array}\right.$
Eliminat same varrable
twice!
(4)

$$
\begin{gathered}
14 y-13(1)=15 \\
14 y-13=15 \\
14 y=28 \\
y=2
\end{gathered}
$$

(5) Sub $y+z$ in
a 3 -vanable eq.
(1)

$$
\begin{aligned}
2 x+4 y-7 z & =7 \\
-\{x+10 y-6 z & =8 \\
M y-13 z & =15
\end{aligned}
$$

(2) $-4 x+20 y-12 z=16$
$\frac{4 x+y-2 z=12}{21 y-17 z=28}$
$3[$
$-2[$

$$
\begin{aligned}
42 y-39 z & =45 \\
-42 y+28 z & =-56 \\
-\frac{11 z}{} & =-11 \\
z & =1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{28+14 \sqrt{2}+12 \sqrt{2}+\frac{12}{62}}{16-\frac{4 \cdot 2}{8}}=\frac{40+26 \sqrt{2}}{8} \\
& 0.25 \mu^{\prime}=l^{.} \\
& 0.5 i^{2}=-1 \quad 2 i^{38}+3 i^{80}-2 i^{27}=\frac{20+18 \sqrt{4}}{4} \\
& 0.75 i^{3}=-i \quad \frac{38}{4}=9.5 \quad \frac{80}{4}=20 \quad \frac{22}{9}=6.25 \\
& { }^{\circ} i^{4}=1=2(-1)+3(1)-2(-i) \\
& =-2+3+2 i \\
& =1+2 i \\
& (6+3 i)(5-2 i) \\
& 30-12 i+15 i+6 i{ }^{2} \\
& 36+3 i
\end{aligned}
$$

Quadratics
Solve $=$ must set eq $=0$.
Eatery

$$
\begin{aligned}
& 2 x^{2}-15=7 x \\
& 2 x^{2}-7 x-15=0 i^{3} \text { is } \\
& \begin{array}{c}
\left.2 x^{2}-7 x-15\right)(x-5) \\
(2 x+3 x)
\end{array}=0 \\
& \frac{\text { Quadratic Firmala }}{x=\frac{-b \pm \sqrt{b^{2}-\text { sac }}}{2 a}} \\
& \begin{array}{cc}
2 x+3=0 & x-5=0 \\
2 x=-3 & x=5
\end{array} \\
& 3 x^{2}-18 x+47=0
\end{aligned}
$$

Double area
How wide is border?

$$
(15+2 x)(20+2 x)=600
$$

FOM, set $=0$, solve

Poractile Motion

$$
\begin{aligned}
& h(t)=\frac{1}{2} a t^{2}+V_{0} t+S_{0} \\
& \quad a=-32 \frac{4.5}{s^{2}} \\
& 2000 \mathrm{ft} 1 \mathrm{~s} \quad a=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& 3 \\
& h(t)=\frac{1}{2}(-32) t^{2}+2000 t+1 \\
& =-16 t^{2}+2000 t+1
\end{aligned}
$$

Maximum here ht

1) Find vertex
2) $t=-\frac{b}{2 a}$
3) sub t in to get h. How many seands to hit grower? $h=0$

$$
0=-16 t^{2}+2000 t+1
$$

Solve with quads. formula.

