SEmester Review (Part 2)

RaD)

$$
f(x)=\left\{\begin{array}{l}
x^{2}+3 x-4 \\
x+4
\end{array}\right.
$$

1) $f(2)=2^{2}+3(2)-4=6$
2)

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} x^{2}+3 x-4=6 \\
& \lim _{x \rightarrow 2^{+}} x+4=6 \\
& \lim _{x \rightarrow 2} f(x)=6
\end{aligned}
$$

3) $f(2)=\lim _{x \rightarrow 2} f(x)$
f is continuous

$$
\left.\begin{array}{l}
x \leq 2 \\
x>2
\end{array}\right\} \quad a=2
$$

1) $f(a)$ is defined.
2) $\lim _{x \rightarrow a}$ exists
3) $f(a)=\lim _{x \rightarrow a} f(x)$
4) $f^{\prime}(a)^{-}=f^{\prime}(a)^{t}$
5)

$$
\begin{aligned}
& f^{\prime}(2)^{-}=2 x+3=7 \\
& f^{\prime}(2)^{+}=1 \\
& f^{\prime}(2)^{-} \neq f^{\prime}(2)^{+}
\end{aligned}
$$

not differentiable.

Find the of. of the tangent line to the graph of $f(x)=\frac{2 x^{-1}}{x}-3 x$ at $x=-2$

$$
\begin{array}{rlrl}
x=-2 & y & =f(-2)=-2 & (-2)=5 \\
m=f^{\prime}(x) & =-2 x^{-2}-3 & (-2,5) \\
f^{\prime}(-2) & =-\frac{2}{x^{2}}-3 & y-y_{1}=m\left(x-x_{1}\right) \\
& =\frac{-2}{4}-3 & y-5=-\frac{7}{2}(x+2) \\
m & =-\frac{7}{2} & y-5=-\frac{7}{2} x-7 \\
y & y=-\frac{7}{2} x-2
\end{array}
$$

$$
\begin{aligned}
& \text { Find } \frac{d y}{d x} \text {. } \\
& y^{2} e^{3 x}+2 \sec x=4 y-7^{x^{2}} \\
& y^{2} \cdot e^{3 x} \cdot 3+e^{3 x} \cdot 2 y \frac{d y}{d x}+2 \sec x \tan x=4 \frac{d y}{d x}-\ln 7 \cdot \cdot \frac{x^{2} x}{} \\
& 3 y^{2} e^{3 x}+2 y e^{3 x} \frac{d y}{d x}+2 \operatorname{secstan} x=4 \frac{d y}{d x}-2 x \ln 7.7^{x^{2}} \\
& 3 y^{2} e^{3 x}+2 \sec x \tan x+2 x \ln ^{2} \cdot 7^{x^{2}}=4 \frac{d y}{d x}-2 y e^{3 x} \frac{d y}{d x} \\
& \frac{3 y^{2} e^{3 x}+2 \sec \tan x+2 x \ln 7 \cdot 7^{x^{2}}}{4-2 y e^{3 x}}=\frac{d y}{d x}\left(4-2 y e^{3 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sin ^{3}\left(6 x^{2}-5 x\right)=\left(\sin \left(6 x^{3} 5 x\right)\right)^{3} \\
& f(x)=\sin \left(6 x^{2}-5 x\right)^{3}
\end{aligned}
$$

$$
10 \frac{\mathrm{~m}}{\mathrm{~s} \text { 1 }}
$$

When Santa is 60 m high

$$
\frac{d}{d t}\left[\tan \theta=\frac{h}{20}\right] \quad \frac{1}{50} h
$$

$$
\begin{aligned}
& 20^{2}+60^{2}=h^{2} \\
& 400+3600=h^{2} \\
& \sqrt{4000}=\sqrt{h^{2}} \\
& 20 \sqrt{10}=h \\
& \frac{20}{h}=20 h^{-1} \\
& -\frac{20}{h^{2}} \frac{d h}{d l}
\end{aligned}
$$

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{20} \frac{d h}{d t}
$$

$$
\left(\frac{20 \sqrt{10}}{20}\right)^{2} \frac{d \theta}{d t}=\frac{1}{20}
$$

$$
10 \frac{d \theta}{d t}=\frac{1}{20}(10)
$$

$$
10 \frac{d \theta}{d t}=\frac{1}{2}
$$

$$
\frac{d \theta}{d t}=\frac{1}{20} \frac{\mathrm{rad}}{\mathrm{sec}}
$$

