$$
\begin{aligned}
& \text { Dividing Polynomials } \\
& \frac{x^{5}-2 x^{2}-27}{x-2} \\
& \text { * Dividing } \\
& \text { Poly. } \\
& \text { * Function ops } \\
& \text { * Inverse Fund. } \\
& x-2 x^{4}+2 x^{3}+4 x^{2}+6 x+12-\frac{3}{x-2} \\
& \text { Change } \frac{x^{5}+2 x^{4}}{2 x^{4}+0 x^{3}}-\frac{2 x^{4}+4 x^{3}}{4 x^{3}} \\
& \text { the signs } \xrightarrow[4 x^{3}]{\longrightarrow}-2 x^{2} \\
& \begin{aligned}
& \operatorname{sign}: \begin{array}{l}
4 x^{3}-2 x^{2} \\
\end{array} \\
& \frac{-4 x^{3}+8 x^{2}}{6 x^{2}+12 x} \\
& 12 x-27
\end{aligned} \\
& \frac{-12 x+24}{-3}
\end{aligned}
$$

Function Operations

$$
\left.\begin{array}{l}
f(x)=x^{2}+3 x+2 \quad g(x)=3 x^{2}-x+7 \\
f(-3)=(-3)^{2}+3(-3)+2 \\
= \\
=2-9+2 \\
\begin{array}{rl}
(f+g)(x) & =x^{2}+3 x+2+3 x^{2}-x+7 \\
& =4 x^{2}+2 x+9 \\
(f+g)(1) & =9(1)^{2}+2(1)+9 \\
& =4+2+9 \\
& =15
\end{array} \\
K(x)=3 x+2 m(x)=x^{2}-2 x+4 \\
(K m)(x)
\end{array}\right)=(3 x+2)\left(x^{2}-2 x+4\right) .
$$

Composition of Functions - Function in a function

$$
\begin{aligned}
& f(x)=3 x+2 \quad g(x)=x^{2}-2 x+4 \quad h(x)=\frac{3 x^{2}+2}{x^{2}-1} \quad K(x)=\sqrt{2 x+1} \\
& f[g(x)]=(f \circ g)(x) \\
& f \text { of } g \text { of } x \\
& f[g(2)] \quad g(2)=2^{2}-2(2)+4 \\
& f[4] \quad f \quad \begin{array}{l}
4 \\
f(4)=3(4)+2=14
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=3 x+2 \quad g(x)=x^{2}-2 x+4 \quad h(x)=\frac{3 k^{2}+2}{x^{2}-1} \quad K(x)=\sqrt{2 x+1} \\
& (f \circ g)(x) \\
& =3\left(x^{2}-2 x+4\right)+2 \\
& =3 x^{2}-6 x+12+2 \\
& =3 x^{2}-6 x+14 \\
& (h \circ K)(x) \\
& =3(\sqrt{2 x+1})^{2}+2 \\
& (\sqrt{2 x+1})^{2}-1 \\
& -\frac{3(2 x+1)+2}{2 x+1-1} \\
& =\frac{6 x+3+2}{2 x}=\frac{6 x+5}{2 x}
\end{aligned}
$$

Function - Each x-coord. is parred with exactly one y-coord.

- Vertical line test
- x-coord- should not repeat

No

$$
\begin{array}{ll}
f=\{(x, y)\} & f=\{(-2,3)(4,2)(7,-4)\} \\
f^{-1}=\{(y, x)\} & f^{-1}=\{(3,-2)(2,4)(-4,7)
\end{array}
$$

Steps for finding inverse:

1) Switch the $x+y$ variables
2) Solve for y.

$$
\begin{aligned}
f(t) & =4 x-7 \\
x & =4 y-7 \\
\frac{x+7}{4} & =\frac{4 y}{4} \\
\frac{x+7}{4} & =f^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& f^{y}(x)=x^{2}+4 \\
& x=y^{2}+4 \\
& \sqrt{x-4}=\sqrt{y^{2}} \\
& \pm \sqrt{x-4}=y
\end{aligned}
$$

Original fund. must pass horiz. line test in order for the inverse to pass the v vertical line tot.
The graphs of all function $\&$ their inverses will reflect over the line $y=x$.
Given two func $f+g$, are they inverses?
If they are inverses, $f \circ g=x$
or g of $=x$

