

SEmester Review

$$
\begin{array}{lll}
N=\text { Natural } & 1,2,3, \ldots \\
W=\text { Whole } & 0,1,2,3, \cdots \\
Z=\text { Integers } & \ldots-3,-2,-10,1,2,3 \ldots
\end{array}
$$

$Q=$ Rational - $\frac{m}{n}$ or termination or reaction decimals
$I=$ Irrational - non-terminating non-repating decimals en $\frac{\pi \sqrt{2} \sqrt{17}}{e}$
$\mathbb{R}=$ Real - All rational $\%$ irrational numbers
$i=$ Imaginary $=\sqrt{-\#}$
$C=$ Complex $-\underset{\text { roll }}{3+2 i n g} \underset{i}{2}, 4+0 i, 0-9 i$
Sig. Digits

$$
\frac{5040}{3}
$$

$0.00 \frac{8}{2}$,
Converting Units $820 \frac{\mathrm{~cm}}{\mathrm{sec}}$ Change to $\mathrm{m} / \mathrm{min}$.

$$
\begin{aligned}
& 820 \frac{\mathrm{~cm}}{\mathrm{sec}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{sen}} \cdot \frac{60 \mathrm{et}}{1 \mathrm{~min}}=\frac{820.60}{106}= \\
& 1 \mathrm{ft}=12 \mathrm{in} \mathrm{~m} . \\
& 3 \mathrm{ft}=1 \mathrm{yd} . \\
& 5280 \mathrm{ft}=1 \mathrm{mi}
\end{aligned}
$$

$1 \quad f(x)=\frac{3 x+6}{2 x-5} \quad f(4)=\frac{3(4)+6}{2(4)-5}=\frac{18}{3}=6$
$8 / 12\left[\frac{2}{3} x-5=\frac{2^{2}}{4}(2 x-1)\right]$ Solve for x.

$$
\begin{aligned}
8 x-60 & =9(2 x-1) \\
8 x-60 & =18 x-9 \\
-8 x & -8 x \\
-\frac{51}{10} & =\frac{10 x}{10} \\
-\frac{51}{10} & =x
\end{aligned}
$$

Matrices
$t 1-=$ must is same dimension, multiplication $=4 \times \frac{3}{\lambda} \times \frac{3}{\# 0} \times$ of must be row x cols.
same

$$
\left[\begin{array}{cc}
-\frac{2}{5} & 6 \\
0 & -1 \\
3 \times 2
\end{array}\right] \cdot\left[\begin{array}{cc}
21 & -5 \\
2 \times 2
\end{array}\right]=\left[\begin{array}{cc}
12 & 24 \\
10+24 & -25+48 \\
0+-4 & 8+-8
\end{array}\right]=\left[\begin{array}{cc}
8 & 34 \\
34 & 23 \\
-4 & -8
\end{array}\right]
$$

LINE
slopz-intercept

$$
y=m x+b
$$

point-slope

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

standard form

$$
A x+B y=C
$$

$$
m=-\frac{A}{B}
$$

$$
5 x-3 y=45
$$

Slop x $x^{2}-\frac{A}{B}=\frac{+5}{+3}$
$x-+y$-interests

Write the eq. of the line
nevin u in perpendicular to $y=-\frac{2}{7} x+3$ and passing though $(-1,1)$

$$
\begin{aligned}
& m=-\frac{2}{7} \quad 1 m=\frac{7}{2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{7}{2}(x++1) \\
& y-4=\frac{7}{2} x+\frac{7}{2} \frac{8}{2} \\
& y=\frac{7}{2} x+\frac{15}{2}
\end{aligned}
$$

$14(a)$ Solve like its an $=$ sign.
$14(b) \frac{5+2 x}{(x-3)(x+7)} \leq 0$

$$
\begin{aligned}
& 5+2 x=0 \\
& \frac{2 x}{2}=\frac{-5}{2} \\
& -7-5 / 203 \\
& x<-7 \text { or }-\frac{5}{2} \leq x<3
\end{aligned}
$$

$$
\begin{gathered}
5-2|x+9|>1 \\
-5-5|x+9|>\frac{-4}{-2} \\
\frac{-2|x+9|<2}{|x+9|} \\
x+9<2 \\
-9<-9 \\
x<-7
\end{gathered}
$$

$$
\begin{gathered}
\text { chares } \\
x+9>-2 \\
-9>-9
\end{gathered}
$$

1) Isslate the ats value.
2) Write + solve 2 equation
3) Graph on \# line

Croato
mustian
(1)

$$
-11<x<-7
$$

