APPLICATIONS OF LOGARITHMS
Great grandpa Sedley left a box buried in your $b a c K y a r d+$ containing $\$ 25,000$. If you invest it. at 4% comporaded monthly, will you be a millionaire in your lifetime?

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
\frac{1,000000}{2500 \theta}=\frac{23000\left(1+\frac{0.04}{12}\right)^{12 t}}{25,0014} \\
40=(1.0033)^{12 t} \\
\frac{\log (40)}{12 \log (1.0033)} \frac{12 t \cdot \log (1.0033)}{12 \log (1.0033)} \\
93.3 \mathrm{yrs}=t
\end{gathered}
$$

CAR - $\$ 19.500$ 15\% depreciation
Trade it in when value of $\$ 10,000$. How many years will you drive the car?

$$
\begin{aligned}
& N=N_{0}(1-r)^{t} \\
& \frac{10.000}{19500}=\frac{19,500(1-0.15)^{t}}{19500} \\
& \frac{20}{39}=(0.85)^{t} \longleftarrow \log 4 p \log ! \\
& \frac{\log \left(\frac{20}{89}\right)}{\log (0.85)}=\frac{t \cdot \log (0.85)}{\log (10.85)} \\
& 4.1 \text { y/15 }
\end{aligned}
$$

Carbon-14, a radioactive isotope, is used to find the age of fossils. A piece of parchment from an ancient scroll is found to have 62.5% of its Carbon-14 left. How old is the scroll? The constant of decay of Carbon-14 is -0.000121 .

$$
\begin{gathered}
q^{2}=q_{0} e^{k t} \\
0.625=e^{-0.000121 t} \\
\ln 0.625=\ln e^{-0.000121 t} \\
\frac{\ln (0.625)}{-0.000121}=\frac{0.000121 t}{3884_{y / s .}}=\frac{0.000124}{}
\end{gathered}
$$

Exponential Regression

Logarithme Regression

Power Regression

$$
y=a \times \sqrt{6}
$$

1) Graph

$$
\begin{aligned}
& f_{1}=\widetilde{29.068} \\
& f_{2}=81
\end{aligned}
$$

Intersect

