ARC LENGTH

Grand Portage, MN $44^{\circ} \mathrm{N}$
New Orleans, LA $30^{\circ} \mathrm{N}$
D, stance between cities?

$$
\begin{aligned}
S & =r \theta \\
& =6400 \cdot \frac{14 \pi}{180}
\end{aligned}
$$

$$
r=6100 \mathrm{Rm}=1564 \mathrm{~km} / 1000 \mathrm{Km}
$$

Deg-Rad

$$
\begin{aligned}
& r=120 \mathrm{~mm} \\
& S=r \theta \\
& S=120 \cdot \frac{144 \pi}{180}=302 \mathrm{~mm} \\
& r \text { cols }
\end{aligned}=300 \mathrm{~m} .
$$

Find θ in degrees

$$
\begin{aligned}
& S=r \theta \\
& \frac{84}{60}=\frac{10 \theta}{60} \\
& 1.4=\theta \\
& 1.4 \mathrm{rads}= \\
& 1.4 \cdot \frac{180^{\circ}}{\pi}=80^{\circ}
\end{aligned}
$$

Area of Sector

$$
A=\frac{\theta}{2 \pi} \cdot \pi r^{2}
$$

$$
A=\frac{1}{2} \theta r^{2}
$$

πr
$\pi \pi r^{2}$

$$
m_{1}^{2}, f t_{1}^{2}
$$

Find area.

$$
\begin{aligned}
A & =\frac{1}{2} \theta r^{2} \\
& =\frac{1}{2}-\frac{40 \pi}{180} \cdot 50^{2} \\
& =873=870 \mathrm{ff}^{2}
\end{aligned}
$$

A merry-go-round has 6^{\prime} radius + is turning at $10 \frac{\mathrm{rev}}{\min }$. How fast is a child on the edge moving in $\mathrm{ft} / \mathrm{sec}$?

$$
1 \mathrm{rev}=2 \pi
$$

$$
\begin{aligned}
& V=\frac{s}{t}=\frac{r \theta}{t}=r \omega \\
& V=\frac{r \cdot \theta}{t}=\frac{6^{r} \cdot 20 \pi}{\min }=120 \pi \frac{\mathrm{ft}}{\operatorname{mn}} \\
& 120 \frac{\pi}{1+100} \cdot \frac{1}{60 \sec }=2 \pi \frac{\mathrm{ft}}{500}=6.28 \mathrm{f} / \mathrm{s}
\end{aligned}
$$

Top spinning at $85 \frac{\mathrm{rev}}{\mathrm{sec}}$. What is its angular velocity?

$$
\omega=\frac{\theta}{t}=\frac{85 \cdot 2 \pi}{1}=170 \pi \frac{\mathrm{rel}}{\mathrm{set}}
$$

Diameter $=4$ is . Find linear vel.

$$
V=r \cdot \omega=2 \cdot 170 \pi \frac{r e y}{s e r}=1070 \frac{\mathrm{in}}{\mathrm{~s}}
$$

