Riemann Sums

$\lim _{\Delta x \rightarrow 0} \sum_{x=a}^{b} f(x) \Delta x$

$$
\text { width }=\frac{3-1}{4}=\frac{2}{4}=\frac{1}{2}
$$

$$
f(x)=3 x^{2}+4=\frac{b-a}{n}
$$

Right $=$
$=\frac{1}{2}[f(1.5)+f(2)+f(2.5)+f(3)]=\frac{1}{2}[f(1)+f(1.5)+f(2)+f(2.5)]$
$=1 / 2[10.75+16+22.75+31]$
$=\frac{1}{2}[7+10.75+16+22.75]$
$=1 / 2[80.5]$
$=\frac{1}{2}[56.5]$
$=40.25$

$$
\text { Left }=28.25
$$

Definite In tegrals
results in a numencal valuo

Indefinite Integals function + C

$$
\begin{aligned}
& \int_{-2}^{5}(4 x+3) d x \\
= & \frac{4 x^{2}}{2}+3 x+\left.c\right|_{-2} ^{5} \\
= & 2 x^{2}+3 x+\left.c\right|_{-2} ^{5} \\
= & 50+15+c+(8++6+7) \\
= & 63
\end{aligned} \int_{5}^{-2}(4 x+3) d x
$$

$$
\int_{4}^{9}\left(u^{3 / 2}-3 u^{1 / 2}\right) d u
$$

Whan using

$$
\frac{2}{5} u^{5 / 2}-\left.\frac{2}{3} \beta u^{3 / 2}\right|_{4} ^{9}
$$

$$
\frac{2}{5} u^{5 / 2}-\left.2 u^{3 / 2}\right|_{4} ^{14} \quad \sqrt{9^{3}}
$$

$$
\frac{2}{5} u \cdot 243-2 \cdot 27-\left[\frac{2}{5} \cdot 32-2 \cdot 8\right]
$$

$$
\frac{486}{5}-54-\frac{64}{5}+16
$$ subinto the

$$
=\frac{422}{5}-38
$$

$$
=\frac{422}{5}-\frac{180}{5}
$$

$$
=\frac{232}{S}
$$

Part 2

$$
\left.\begin{array}{l}
\frac{\operatorname{vart~2}}{\frac{d}{d x} \int_{1}^{x}}\left(4 t^{2}+t\right) d t= \\
\frac{d}{d x}\left[\frac{4 t^{3}}{3}+\left.\frac{t^{2}}{2}\right|_{1} ^{x}=\frac{d}{d x}\left[\frac{4 x^{3}+x}{3}+\frac{x^{2}}{2}-\left[\frac{1}{3}+\frac{1}{2}\right]\right.\right.
\end{array}\right] \begin{aligned}
& \frac{d}{d x} \int_{6}^{x} \frac{\sin ^{8}\left(3 t^{2}-1\right)}{\ln 8 t^{4}} d t=\frac{\sin ^{8}\left(3 x^{2}-1\right)}{\ln 8 x^{4}} \\
& \frac{d}{d x} \int_{2}^{x^{4}} \frac{t^{4}}{\sqrt{t^{3}+2}} d t=\frac{\left(x^{4}\right)^{4}}{\sqrt{\left(x^{4}\right)^{3}+2}} \cdot 4 x^{3}=\frac{x^{16}}{\sqrt{x^{12}+2}} \cdot 4 x^{3} \\
& \frac{d}{d x} \int_{x^{4}}^{\frac{4 x^{7}}{x^{7}}} \frac{2 t}{t+1} d t \\
& \frac{6 x^{7}}{3 x^{7}+1} \cdot 21 x^{6}-\frac{2 x^{4}}{x^{4}+1} \cdot 4 x^{3}
\end{aligned} .
$$

