ANTIDIFFERENTIATION

$$
\begin{array}{ll}
y=f(x) & \int\left(4 x+9 x^{2}\right) d x \\
\frac{d y}{\frac{4 x^{2}}{2}}=f^{\prime}(x) \hat{3 x^{3}} \\
\int d y=\int f^{\prime}(x) d x & =2 x^{2}+3 x^{3}+C \\
y=\int f^{\prime}(x) d x & \frac{\text { Power Rule }}{\int x^{n} d x=\frac{x^{n+1}}{n+1}+C}
\end{array}
$$

$$
\begin{aligned}
& \int\left(\frac{2}{x^{3}}+4 \sqrt[3]{x}-x^{3 / 5}+7\right) d x \\
& \int\left(2 x^{-3}+4 x^{1 / 3}-x^{3 / 5}+7\right) d x \\
= & \frac{2 x^{-2}}{-2}+\frac{3}{4} \cdot x^{4 / 3}-\frac{5}{8} x^{8 / 5}+7 x+C \\
= & \frac{-1}{x^{2}}+3 x^{4 / 3}-\frac{5}{8} x^{8 / 5}+7 x+C \\
& \int(7 x-4)^{2} d x \\
= & \frac{49 x^{3}}{3}-\frac{56 x^{2}}{2}+16 x+C \\
= & \frac{49}{3} x^{3}-28 x^{2}+16 x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{4 x^{2}-2 x+1}{\sqrt{x}} d x \\
& \int\left(4 x^{2}-2 x^{1}+1\right) \cdot x^{-1 / 2} d x \\
& \int\left(4 x^{3 / 2}-2 x^{1 / 2}+x^{-1 / 2}\right) d x \\
& \frac{2 \cdot 4 x^{5 / 2}-\frac{2}{3} \cdot 2 x^{3 / 2}+2 x^{1 / 2}+C}{\frac{8}{3} x^{5 / 2}-\frac{4}{3} x^{3 / 2}+2 x^{1 / 2}+C}
\end{aligned}
$$

Initial Value Problems \longleftarrow (Find C.)
Find y.

$$
\begin{aligned}
& \text { Find } y . \\
& \int \frac{d y}{d x}=\left(3 x^{2}+2 x\right) d x \quad y(2)=7 \\
& y=3 x^{3}+2 x^{2}+c \\
& 7=2^{3}+2^{2}+c \\
& 7=8+4+c \\
& -12=c \\
& -5=x^{3}+x^{2}-5 \\
& y=
\end{aligned}
$$

U-Substitution (Reverse chain rule)

$$
\begin{aligned}
& \int 6 x\left(x^{2}+5\right)^{8} d x \\
& u=x^{2}+5 \\
& \int 6^{3} x u^{8} \cdot \frac{d u}{2 x} \\
& \frac{d u}{d x}=2 x g d x \\
& \frac{d u}{2 x}=d x \\
& =\frac{3 u^{9}}{9}+c \\
& =\frac{1}{3}\left(x^{2}+5\right)^{9}+C \\
& \frac{3\left(x^{2}+5\right)^{8} \cdot 2 x}{\int \frac{3 x^{10}}{\left(4-6 x^{11}\right)^{2}} d x} \\
& u=4-6 x^{11} \\
& d u=-66 x^{10} d x \\
& \int \frac{3^{7} x^{7}}{u^{7}} \cdot \frac{d u}{-6 x^{10}}-\frac{d u}{-26 x^{10}}=d x \\
& \frac{1}{-22} \int \frac{1}{u^{7}} d \cdot u \\
& -\frac{1}{22} \int u^{-1} d u \\
& \begin{array}{l}
-\frac{1}{22} \cdot \frac{u^{-6}}{-6}+C \\
\frac{1}{132\left(4-6 x^{11}\right)^{6}}+C
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d}{d x} \sin x=\cos x & \int \cos x d x=\sin x+C \\
\frac{d}{d x} \cos x=-\sin x & \int \sin x d x=-\cos x+C \\
\frac{d}{d x} \tan x=\sec ^{2} x & \int \sec ^{2} x d x=\tan x+C \\
\frac{d}{d x} \cot x=-\csc ^{2} x & \int \csc ^{2} x d x=-\cot x+C \\
\frac{d}{d x} \sec x=\sec x \tan x & \int \sec x \tan x d x=\sec x+C \\
\frac{d}{d x} \csc x=-\csc x \cot x & \int \csc x \cot x d x=-C \csc +C \\
\frac{d}{d x} e^{x}=e^{x} & \int e^{x} d x=e^{x}+C \\
\frac{d x}{d x} \ln x=\frac{1}{x} & \int \frac{1}{x} d x=\ln |x|+C
\end{array}
$$

$$
\begin{aligned}
& \int\left(4 \cos x-3 \sec ^{2} x+4 \csc x \cot x\right) d x \\
& 4 \sin x-3 \tan x-4 \csc x+C \\
& \int \csc x(\csc x-\cot x) d x \\
& \int\left(\csc ^{2} x-\csc x \cot x\right) d x \\
& -\cot x+\csc x+C \\
& \int\left(\frac{1}{\sin ^{2} x}-\cot x \sin x\right) d x \\
& \int\left(\csc ^{2} x-\frac{\cos x}{\sin -x} \sin x\right) d x \\
& \int\left(\csc ^{2} x-\cos x\right) d x \cdot \quad(6 x-5) e^{3 x^{2}-5 x} \\
& -\cot x-\sin x+C \\
& \int\left(\frac{6}{x}+5 e^{x}\right) d x \\
& 6 \cdot 1 \\
& =6 \ln |x|+5 e^{x}+c
\end{aligned}
$$

