Volume
6. 4'

$$
(0,1.25)
$$

$$
\lim 4 x^{3}-13 x^{2}+10 x=0
$$

$$
\lim _{x \rightarrow 125} 4 x^{3}-13 x^{2}+10 x=0
$$

$x \rightarrow 0$

$$
V(1 / 2)=2.25
$$

$$
1 / 212.25
$$

$$
\begin{aligned}
& V=l w h \quad(0,1.25) \\
& V=(4-2 x)(2.5-2 x) x \\
& V=\left(10-8 x-5 x+4 x^{2}\right) x \\
& \forall V=4 x^{3}-13 x^{2}+10 x \\
& V^{\prime}=12 x^{2}-26 x+10=0 \\
& 2\left(6 x^{2}-13 x+5\right)=0 \\
& 2(3 x-5)(2 x-1)=0 \\
& x \quad x=-13 x=1 / 2
\end{aligned}
$$

Cut squares of $1 / 2 \mathrm{ft}$. (6 in .)

1

$$
\begin{aligned}
& \omega:(0, \sqrt{108}) \\
& 7 \omega^{2}=756 \\
& \sqrt{\omega^{2}}=\sqrt{108} \\
& \lim _{\omega \rightarrow 0} 63 \omega-\frac{7}{12} \omega^{3}=0 \\
& \lim _{\omega \rightarrow \sqrt{08}} 63 \omega-\frac{7}{12} \omega^{2}=0 \\
& V(6)=252 \\
& \frac{252}{6} 2
\end{aligned}
$$

$$
h=\frac{756-7 \omega^{2}}{12 \omega}
$$

$$
h=7
$$

Dimensions, $6^{1} \times 6^{1} \times 7^{1}$

$$
\begin{aligned}
& \text { Cost }=756 \\
& \text { botha }=5 / \mathrm{ft}^{2} \\
& \text { Top }=s_{2} 1 / \mathrm{ft}^{2} \\
& \text { sids }=s_{3} / \mathrm{ft}^{2}
\end{aligned}
$$

Maximize Volume.

$$
V=\omega^{2} h \leftarrow
$$

$5 \omega^{2}+2 \omega^{2}+3 \cdot 4 \omega h=756$

$$
\Rightarrow 7 \omega^{2}+12 \omega K=756
$$

$$
\left.\frac{12 \omega h}{12 \omega \omega}=\frac{756-7 \omega^{2}}{12 \omega}\right)
$$

$$
V=\omega^{2}\left(\frac{756-7 \omega^{2}}{12 \omega^{2}}\right)
$$

$$
V=\frac{7 \operatorname{sh\omega }}{12}-\frac{7 \omega^{3}}{12}
$$

$$
* V=63 \omega-\frac{7}{12} w^{3}
$$

Crit. pts.

$$
\begin{gathered}
V^{\prime}=63-\frac{7}{4} \omega^{2}=0 \\
\frac{4}{7} \cdot \frac{4}{4}=\frac{7}{x} \omega^{2} \\
\sqrt{36} \sqrt{\omega^{2}} \\
+6=\omega
\end{gathered}
$$

Bottom costs three as much as sides $\quad 16 \pi=\pi r^{2} h$
$924 \frac{\text { trees }}{\text { acre }}-600$ apdes/tree
\uparrow tree $\downarrow 12$ apples pertice

$x=\#$ of tress added Maximize Apple production

$$
\begin{aligned}
& A=(24+x)(600-12 x) \\
& {[0,50]} \\
& 6 a-12 x=0 \\
& 600=12 x \\
& 50=x
\end{aligned}
$$

