Area 1

$$
\begin{aligned}
& f(x)=x^{3} \quad[-2,2] \\
& \left.\int_{-2}^{2} x^{3} d x=\begin{array}{c}
0 \\
0 \\
1
\end{array} \right\rvert\, \begin{array}{l}
1 \\
8
\end{array} \\
& =\left.\frac{x^{4}}{4}\right|_{-2} ^{2}=4-4 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
&-\int_{-2}^{0} x^{3} d x+\int_{0}^{2} x^{3} d x \\
&=-\left.\frac{x^{4}}{4}\right|_{-2} ^{0}+\left.\frac{x^{4}}{4}\right|_{0} ^{2} \\
& 0++^{+} 4+4-0 \\
&= 8 \text { units }
\end{aligned}
$$

Area 1

$$
\begin{aligned}
& f(x)=x^{3} \quad[-2,2] \\
& \left.\int_{-2}^{2} x^{3} d x=\begin{array}{c}
0 \\
0 \\
1
\end{array} \right\rvert\, \begin{array}{l}
1 \\
8
\end{array} \\
& =\left.\frac{x^{4}}{4}\right|_{-2} ^{2}=4-4 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
&-\int_{-2}^{0} x^{3} d x+\int_{0}^{2} x^{3} d x \\
&=-\left.\frac{x^{4}}{4}\right|_{-2} ^{0}+\left.\frac{x^{4}}{4}\right|_{0} ^{2} \\
& 0++^{+} 4+4-0 \\
&= 8 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
& H(x)=x^{2}-6 x+5 \quad[0,7] \\
& \operatorname{Vertx}\left(-\frac{b}{2 a}, \operatorname{sux}^{2} x\right) \\
& x=\frac{6}{2(1)}=3 \quad(3,-4) \\
& y=9-18+5=-4 \\
& \begin{array}{l|l}
x & y \\
\hline 0 & 0 \\
1 & 1 \\
2 & 4 \\
3 & 9
\end{array} \\
& \int_{0}^{1}\left(x^{2}-6 x+5\right) d x-\int_{1}^{5}\left(x^{2}-6 x+5\right) d x+\int_{5}^{7}\left(x^{2}-6 x+5\right) d x \\
& =\frac{71}{3} \text { units }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f(x)= \begin{cases}x^{2}+9 x+3 & -3 \leq x \leq 0 \\
x-2 & 0<x<4 \\
\sqrt{8-x} & 4 \leq x \leq 8\end{cases} \\
{\left[-3,87 \begin{array}{ll}
\sqrt{-(x-8)} & 0 \\
\begin{array}{ll}
\text { Right } 8 & -1 \\
-4 & 0 \\
-4
\end{array} \\
x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2 & -9
\end{array}\right]}
\end{array} \\
& y=4-8+3=-1 \\
& y=\sqrt{x} \\
& -\int_{-3}^{-1}\left(x^{2}+4 x+3\right) d x+\int_{-1}^{0}\left(x^{2}+4 x+3\right) d x-\int_{0}^{2}(x-2) d x+\int_{2}^{4}(x-2) d x \\
& +\int_{4}^{8} \sqrt{8-x} d x \\
& =12 \text { units }^{2} \\
& u=8-x \\
& d u=-1 d x
\end{aligned}
$$

Find the area between

$$
f(x)=x+2 \text { y } g(x)=x^{2}
$$

$$
\int_{-1}^{2}\left(x+2-x^{2}\right) d x
$$

$$
\begin{aligned}
&- \\
& \int^{-g+t}(f-q) d x= \\
&=
\end{aligned}
$$

$$
\frac{x^{2}}{2}+2 x-\left.\frac{x^{3}}{3}\right|_{-1} ^{2}
$$

$$
\begin{aligned}
& 31-1 \\
& 5 / 3+\left(\frac{1}{2}+2+\frac{1}{3}\right) \\
& -1 / 2=41 / 2 \text { or } \frac{9}{2} u_{n i t s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2+4-8 / 3+\left(\frac{1}{2}+2+\frac{1}{3}\right) \\
& =8-3-1 / 2=41 / 2 \text { or } \frac{9}{2} \text { uni }^{2}
\end{aligned}
$$

Always top function - bottom function

February 7, 2022

