$$
\begin{aligned}
& \text { 6/ Radium-226 half-life } 1800 \text { yos } \\
& 100 \text { grans } \\
& q=q_{0} e^{K t} \\
& \frac{50}{100}=1 d 0 e^{K-1800} \\
& \ln (0.5)=\ln \left(e^{1800 \mathrm{~K}}\right) \\
& \frac{\ln (0.5)}{1800}=\frac{1800 K}{1802} \\
& -3,85 * 10^{-4}=12 \\
& -0.000385=K \\
& \text { Maff-life } 1800 \text { yos } \\
& 100 \text { graus }
\end{aligned}
$$

1) r^{2}
2) pts. balaned
3) Prodret fature

February 1, 2022

Solving \log equations
$4 / \quad \log _{\sqrt{2}} 32=x$
$\sqrt{2}^{-x_{12} 32}=\sqrt{2}^{x}$
$32=\sqrt[2]{2^{x}}$
$2^{5}=\frac{z^{2}}{2}$
$2 \cdot 5=\frac{x}{2} x^{2}$
$10=x$

$$
\begin{aligned}
& 5(0) \\
& \frac{1}{2}\left(x \log 4^{2}-\log 2\right)^{2}=\log x \\
& \frac{1}{2}(\log 16-\log 8)=\log x \\
& \frac{1}{2} \log \left(\frac{1}{8}\right)=\log x \\
& \frac{\pi}{8} \log 2^{1 / 2}=\log x \\
& 10^{\log 2^{21 / 2}}=10^{\log x} \\
& \sqrt[2]{2}=2^{1 / 2}=x
\end{aligned}
$$

p. $3592 \int_{1}^{4} f(x) d x=8$

$$
\int_{1}^{6} f(x) d x=5
$$

$$
-3 \int_{1}^{4}+x \cdot f(x) d x=-3-8=-24
$$

$$
\text { 63/ } \begin{aligned}
\frac{d}{d x} \int_{2}^{x^{3}} \frac{1}{p^{2}} d p=\frac{1}{\left(x^{3}\right)^{2}} \cdot 3 x^{2} & =\frac{1}{x^{84}} \cdot 3 x^{2} \\
& =\frac{3}{x^{4}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \frac{d}{d x} \int_{e^{x}}^{e^{2 x}} \ln t^{2} d t \\
& =\ln \left(e^{2 x}\right)^{2} \cdot e^{2 x} \cdot 2-\ln \left(e^{x}\right)^{2} \cdot e^{x} \\
& \ln e^{4 x}-\ln \left(e^{2 x}\right) \cdot e^{x} \\
& \begin{array}{l}
=4 x \cdot e^{2 x}-2 \\
=8 x e^{2 x}-2 x e^{x}
\end{array} \\
& =2 x e^{x}\left[4 e^{x}-1\right] \\
& \frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \cdot g^{\prime}(x) \\
& \frac{d}{d x} \int \\
& \left(7 x^{2}+5\right)^{9} \quad \int x \sin \left(4 x^{2}\right) \text {. } \\
& \int \sin ^{5}\left(9 x^{2}\right)
\end{aligned}
$$

$$
\int_{4}^{\frac{1}{\sqrt{3}}} \frac{4}{9 x^{2}+1} d x
$$

$$
\begin{array}{cc}
u=3 x & u=3 \cdot \frac{1}{\sqrt{3}}=\frac{3}{\sqrt{3}} \\
d u=3 d x & \frac{\sqrt{3}}{2} \\
\frac{d u}{3}=d x & u=3 \cdot \frac{1}{3}
\end{array}
$$

$$
\begin{aligned}
& \left.\frac{4}{3} \tan ^{-1} u\right|_{1} ^{\sqrt{3}} \\
& \frac{4}{3}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1}(1)\right] \\
& \frac{4}{3}\left[\frac{\pi}{3}-\frac{\pi}{4}\right] \\
& \frac{4}{3}\left[\frac{4 \pi}{12}-\frac{3 \pi}{12}\right] \\
& \frac{7}{3} \cdot \frac{\pi}{12}=\frac{\pi}{9}
\end{aligned}
$$

$$
2 \omega+\frac{0}{0}=\frac{12}{2 \omega}
$$

$$
A=2 \omega+\frac{6}{w}
$$

$$
\begin{aligned}
& \text { 40) } \int_{0}^{2} \frac{2 x}{\left(x^{2}+1\right)^{2}} d x \\
& u=x^{2}+1 \\
& d u=2 x \cdot d x \\
& \int_{1}^{5} \frac{2 x}{u^{2}} \cdot \frac{d u}{2 x} \\
& \frac{d u}{2 x}=d x \\
& \int_{1}^{5} u^{-2} d u \\
& =\left.\frac{u^{-1}}{-1}\right|_{1} ^{5} \\
& =\left.\frac{-1}{u}\right|_{1} ^{5}=\frac{-1}{5}++1=\frac{4}{5}
\end{aligned}
$$

Mean Value The for laterychls

$$
f(x)=x^{2}-2 x+1 \quad a=2 \quad b=5
$$

Find fave.

$$
\begin{aligned}
& f_{\text {cave }}=\frac{1}{5-2} \int_{2}^{5}\left(x^{2}-2 x+1\right) d x \\
& =\frac{1}{3}\left[\frac{x^{3}}{3}-\frac{8 x^{2}}{4}+\left.x\right|_{2} ^{5}\right. \\
& =\frac{1}{3}\left[\frac{125}{3}-25+5+\left(-\frac{8}{3}+4 \mp 2\right)\right] \\
& =\frac{1}{3}\left[\frac{117}{3}-18\right. \\
& =\frac{1}{3}[39-18] \\
& =1 / 3[2 .]=7 \quad y=7
\end{aligned}
$$

Find x-coord where fave occurs

$$
\begin{aligned}
& x^{2}-2 x+1=7 \\
& x^{2}-2 x-6=0
\end{aligned}
$$

$x=$ Quads. formula answers most $2+s$.

$$
x=\sim x=\sim
$$

$$
\begin{aligned}
& \int \frac{1}{x} d x=\ln |x|+C \quad \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin _{+C}^{-1}+C \\
& \int e^{x} d x=e^{x}+C \\
& \int \sec x \tan x d x=\sec x+c \\
& \int \frac{(\ln x+7)}{x} d x \quad \begin{array}{l}
u=\ln x+7 \\
\int \frac{u}{x} \cdot x d u \quad x d x=\frac{1}{x} d x
\end{array}
\end{aligned}
$$

1) Make the "1"
2) Figure out what $(u)^{2}$ is $u=$
3) Integrate with inverse the function
