The History of Calculus

The history of calculus does not begin with Newton and Leib-
niz’s findings. Their calculus was the culmination of centuries
of work by other mathematicians rather than an instant epiphany
that came individually to them. Below is a summary of some of
the more important developments in calculus up until the early
seventeenth century.

1600 B.C

The Rhind Papyrus shows that the ancient Egyptians knew that
the volume of a rectangular pyramid volume is equivalent to 1/3
of the volume of a rectangular prism having the same base and
height, but not how they reached this conclusion. The Babyloni-
ans were able to devise a formula for the value of a square root of
any rational number to as many decimal places as was desired.
The Babylonians did not realize that this was an infinite process.

425-200 B.C.

The ancient Greeks discovered that the diagonal of many geomet-
ric figures would never be a whole number and that determining
this value involved an infinite process. The Greek Eudoxus devel-
oped the "method of exhaustion” and used his method to prove
the Egyptian discovery about the area of a pyramid as well as for-
mulas for the volume of many other geometric figures. The Greek
Archimedes developed his own method of determining the area
of a segment of a parabola.

320 A.D.

The Greek mathematician Pappus determined that the volume
generated by the rotation of a plane figure about an axis not cut-
ting the figure is equal to the product of the area of the plane fig-
ure and the distance that the center of gravity of the plane figure
covers in the revolution.” Unfortunately, Pappus did not provide a
proof of his statement.

300-1300 A.D.

Europe and mathematics experienced one thousand years of de-
cline during the medieval times.

1300 A.D.

Nicole Oresme constructed one of the first graphs of a function.
He went so far as to say that the area under the graph would rep-
resent the total distance covered and was even able to integrate
functions that took the form of triangles, rectangles, or trapezoids.

1630 A.D.

Bonaventura Cavalieri published his discoveries concerning an-
alytic geometry and indivisibles and, later, an equivalent to what
we now call the power rule for integration.

1620-1640 A.D.

Pierre de Fermat created a more logically adequate process for
calculating integrals. He was the first mathematician to be cred-
ited with discovering the process and power rule for differentia-
tion. Fermat was one of many to notice the inverse relationship
between integrals and derivatives but not the importance of this
relationship.

By the early seventeenth century, everything was in place for
Newton and Leibniz to take all these ideas of limited scope and
compile them into methods of universal applicability.

Newton and Leibniz: the Calculus Controversy

|Isaac Newton

Sir Isaac Newton was born on December 25, 1642 in Wool-
sthorpe, England. He attended the King’s School at Gratham and
went on to pursue a higher education at Cambridge University.
He graduated in 1665 without honors or distinction. He obtained
his masters degree in 1668. Newton made discoveries in mathe-
matics, optics, and physics before his death on March 20, 1727.

Calculus and Notation

Using infinite series and the already established power rule for in-
tegrals, Newton was able to calculate the areas under curves that
others previously could not. He was also able to calculate the tan-
gent lines to these curves. He called his calculus the “method of
fluxions” and he thought of everything in terms of motion. He con-
sidered the dependent variable x to be the "fluent” and its velocity
to be the "fluxion.” He designated the fluxion, nowadays known as
the derivative with respect time ¢, with the notation =. He called
the differential of x the "moment” of x and designated it with the
notation o, which represented the change in the velocity of z in
an infinitely small time period. He designated the fluent, or anti-
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derivative of x, first by Ox or [z] and later by z.

L . 522 + 2
To calculate the derivative of the function y = ‘ 7+ . Newton

would first solve this equation for 0, leaving him with 7y —52% —2 =
0. Next, Newton would plug in z + 2o for x and y + yo for y, leaving
him with 7(y + o) — 5(z + 20)* — 2. Newton would subtract the
original equation from the change equation as follows:

7(y 4+ v0) — 5(x + 20)* — 2 — (Ty — 5a* — 2) = 0

Ty + Tyo — 5(x* + 2xd0 + #°0°) —2 — Ty +52° +2 =10
Ty + Tyo — b — 10xdo — bi*o* —2 — Ty + 52> +2 =0
790 — 10zi0 — 5i*o” = 0

Next, Newton would divide through by o, the "moment” of «,
leaving:

7y — 10zt — 53%0 = 0

Newton claimed that terms with o were nothing compared to
the others and could be cast out:

7 — 10zd = 0

Newton’s method found the differential equation that would
satisfy a given equation. However, this differential equation can

easily be solved for the derivative, % as follows:
7y — 10xx =0
7y = 10z
 10xx
Y=
y 10z
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Gottfried Wilhelm von Leibniz

Gottfried Wilhelm von Leibniz was born on July 1, 1646 in
Leipzig, Germany. He attended the Nicolai school, but he was
largely self-taught. He studied law at the University of Leipzig
but the school refused to grant him a doctorate at the young age
of twenty-one, so he obtained it from the University at Altdorf in-
stead. Leibniz made discoveries in mathematics and physics be-
fore his death on November 14, 1716.

Calculus and Notation

While Newton thought of calculus in terms of motion, Leibniz
viewed it in terms of sums and differences. Specifically, Leibniz
used ordinates and sequences of the differences of these ordi-
nates to calculate the area under curves. Following these discov-
eries, Leibniz introduced the notation [ = dx, where [ was an en-
longated representation of the first letter of the Latin word summa,
meaning summation, and d was the first letter of the Latin word
differentia, meaning differential (infinitesimal distance). Leibniz
also used a differential triangle to discover the slope of a tangent
line to a curve. He was thus able to derive the power, product,
quotient, and chain rules.

o L. . 5 + 2
Leibniz calculated the derivative of the function y =

differently than Newton but in a manner familiar to the modern-
day calculus student. Having discovered the power rule d(z") =
na" " tdx and that the derivative of a constant is 0, Leibniz was able
to take the derivative of the function as follows:

1
Y = ?(5I2 + 2)

dy = d(>(522 + 2))
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dy = H(d(52?) + d(2)
1

dy = ?(5 * 2x 4+ 0)dx
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dy = Txda:

dy _ 10
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The Controversy

The calculus controversy emerged largely due to the timing of
these men’s publications. While Newton had made his discov-
eries in 1664-1666, his findings were not published until 1693.
Leibniz, on the other hand, made his discoveries after Newton,
in the timeframe of 1672-1676, but published them in 1684 and
1686, before Newton. The differences between the discovery
dates and publication dates led the mathematical community to
guestion whether Leibniz had truly discovered the method inde-
pendently of Newton, or if he had merely stolen Newtons ideas
and coupled them with his own unique notation.

National pride played a great role in the exacerbation of the
dispute. Those involved realized that credit for the discovery of
a whole new branch of mathematics was at stake, and each side
wanted their country to get this credit. In 1711, the controversy
was taken to court. A commission was appointed by the Royal
Society to look into the charges. Since Newton was the president
of the Royal Society, it is not all that surprising that Leibniz was
found guilty of plagiarism.

Eventually, the mathematical community came to realize that
Newton and Leibniz had made their discoveries independently,
but not until years after Leibniz’s death. During this time, continen-
tal Europe continued to use Leibniz’s easier notation and methods
while England remained loyal to the more complicated methods
and notation of their own Newton. For this reason, England was
far behind the rest of the continent in mathematics for the entire
eighteenth century.

Conclusion

The calculus controversy may seem frivolous to the modern
reader, but it is necessary to recognize its importance at the time.
This controversy was far more than just a quibble between two
mathematicians who wanted credit for the discovery of calculus;
indeed, it was a matter of national pride and historical signifi-
cance. As a piece of history, the controversy serves as a lesson
to the modern world that it is perhaps better for great minds to
work together instead of trying to undermine each other. This can
aid in the avoidance of stagnation in mathematical and scientific
thought and advances.



