Double + Half Anale loentimes

$$
\begin{aligned}
\sin (x+\infty) & =\sin x \cos x+\cos x \sin 8 \\
\sin 2 x & =2 \sin x \cos x \quad \tan 2 x \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-2 \sin ^{2} x \\
& =2 \cos ^{2} x-1
\end{aligned}
$$

$$
\begin{aligned}
& \cos 2 x=1-2 \sin ^{2} x \\
& \cos A=1-2 \sin ^{2} \frac{A}{2}
\end{aligned}
$$

$$
\frac{\alpha}{\sin } \frac{\sin ^{2} \frac{A}{2}}{2}=\frac{1-\cos A}{2}
$$

$\sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}} \quad \tan \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}(1+\cos A)}\left(1+\frac{\cos A)}{1-\cos ^{2} A}\right.$

$$
\begin{aligned}
\tan \frac{A}{2} & = \pm \sqrt{\frac{1-\cos A}{1+\cos A}(1+\cos A)}(1+\cos A) \\
* & =\frac{1-\cos A}{\sin A} \\
& =\frac{\sin A}{1+\cos A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { True/False } \\
& \cos 50^{\circ}=1-2 \sin ^{2} 25^{\circ} \\
& F_{\sin 92^{\circ}}=2 \sin 84^{\circ} \cdot \cos 84^{\circ} \\
& =\sin \left(2.84^{\circ}\right) \\
& =\cos \left(2.25^{\circ}\right) \\
& =\cos 50^{\circ} \\
& \text { aI } \\
& \text { True } \cos 130^{\circ}=\pi \sqrt{\frac{1-\cos 260^{\circ}}{2}} \\
& \text { determined }=\sin \frac{A}{2}=\sin \left(\frac{260^{\circ}}{2}\right)=\sin 130^{\circ} \\
& \text { by the quadrant } \\
& \text { Where } \frac{A}{2} \text { is located. } \\
& F \sin 194^{\circ}=\sqrt{\frac{1-\cos 388^{\circ}}{2}}
\end{aligned}
$$

Evaluate.
Evaluate

$$
\begin{aligned}
\frac{2 \tan 75^{\circ}}{1-\tan ^{2} 75^{\circ}} & =\tan \left(2.75^{\circ}\right) \\
3 \operatorname{san} 150 & =\tan 150^{\circ} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

$$
\frac{1-\cos 450^{\circ}}{\sin 450^{\circ}}
$$

$$
=\tan \left(\frac{A}{2}\right)=\tan \left(\frac{450^{\circ}}{2}\right)
$$

$$
=\tan ^{+} 225^{\circ} \frac{1}{45}
$$

Find $\sin 2 x$ given $\tan \underline{x}=\frac{2}{1} \frac{y}{x}+x$ in $Q \mathbb{I}$.

$$
\begin{array}{rlr}
\sin 2 x & =2 \sin x \cos x & \\
& =\frac{2}{1}\left(\frac{-2}{\sqrt{5}}\right)\left(\frac{-1}{\sqrt{5}}\right) & \\
& =\frac{4}{5} & 1+4=r^{2} \\
& & \sqrt{5}=\sqrt{r^{2}}
\end{array}
$$

Find $\cos \left(\frac{A}{2}\right)$ given $\sin A=\frac{-1}{2}+A$ in $Q \frac{\pi}{2}$

$\frac{\frac{A}{1+\tan x}}{2 Q I T} \longrightarrow \sqrt{\frac{1+\sqrt{3} / 2}{2}}$

$$
\begin{gathered}
1+x^{2}=4 \\
\sqrt{x^{2}}=\sqrt{3}
\end{gathered}
$$

$=\sqrt{\frac{\frac{2}{2}+\frac{\sqrt{3}}{2}}{\frac{2}{1}}}$
$=\sqrt{\frac{2+\sqrt{3}}{2} \cdot \frac{1}{2}}$

$$
\begin{aligned}
& =\sqrt[-]{\frac{2+\sqrt{3}}{4}} \\
& =\frac{-\sqrt{2+\sqrt{3}}}{2}
\end{aligned}
$$

Verify.

$$
\begin{aligned}
\frac{\sin 2 x}{1-\cos 2 x} & =\frac{2 \sin ^{2}(x / 2)-1}{-\sin x} \\
\frac{2 \sin x \cos x}{1-\left(1-2 \sin ^{2} x\right)} & =\frac{2\left(\sqrt{\frac{1-\cos x}{-\sin x}}\right)^{2}-1}{2 \sin ^{2} x} \\
\frac{2 \sin x \cos x}{\cos x} & =\frac{1-\cos x-1}{\sin x}
\end{aligned}
$$

Tips for choosing $\cos 2 x$:

1) Look at the opposite side
2) Choose the $\cos 2 x$ 1 density that will make terms cancel.

62

$$
\begin{aligned}
& \sin 4 x=4 \sin x \cos x-8 \sin ^{3} x \cos x \\
& \sin (2 \cdot 2 x)=4 \sin \left(\operatorname{sos} x\left(1-2 \sin ^{2} x\right)\right. \\
& \sin (2 \cdot A)=2 \cdot{ }^{2 \sin x \cos x} \\
& 2 \sin 2 x \cos 2 x=\frac{\downarrow}{\sin 2 x} \cdot \cos 2 x
\end{aligned}
$$

