Fundamental Identities
Identity - true for any value you put in the

$$
2(x+5)=2 x+10
$$

Trig Identities - True for any angle measure. \rightarrow change complicated expressions to a simpler form.

Reciprocal
1.)
$\csc \theta=\frac{1}{\sin \theta}$
4) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\sin \theta=\frac{1}{\csc \theta}$
5) $\cot \theta=\frac{\cos \theta}{\sin \theta}$
2) $\sec \theta=\frac{1}{\cos \theta}$
3) $\cot \theta=\frac{1}{\tan \theta}$

Pythagorean
6)

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} 30^{\circ}+\cos ^{3} 38=1 \\
& \left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{8}\right)^{2}= \\
& \frac{1}{4}+\frac{3}{4}=1
\end{aligned}
$$

8) $1+\cot ^{2} \theta=\csc ^{2} \theta$

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=\cos \theta \\
& \tan (-\theta)=-\tan \theta
\end{aligned}
$$

Even

$$
\begin{aligned}
& f(-x)=f(x) \\
& O d d \\
& f(-x)=-f(x)^{T}
\end{aligned}
$$

Simplify.

$$
\begin{aligned}
& \frac{(1+\cos x) \frac{\cos x}{(1+\cos x) \sin x}+\frac{\sin x}{1+\cos x}(\sin x)}{(\sin x)}(1+\tan x)^{2}-2 \tan x \\
& =\frac{\cos x+\cos ^{2} x i \sin ^{2} x}{\sin x(1+\cos x)} \\
& (1+\tan x)(1+\tan x)-2 \tan x \\
& 1+2 \tan x+\tan ^{2} x-2 \tan x \\
& \begin{array}{l}
=\frac{\cos x+1}{\sin x(1+\cos x)} \\
\left.=\frac{1}{\sin x}=\csc x\right)
\end{array} \\
& \frac{\sec ^{3} x-8}{\sec ^{2} x-4} \\
& \frac{x^{3}-8}{x^{2}-4}=\frac{(x-2)\left(x^{2}+2 x+1\right)}{(x+2)(x-2)} \\
& \frac{(\sec x-2)\left(\sec ^{2} x+2 \sec x+4\right)}{(\sec x-2)(\sec x+2)}
\end{aligned}
$$

Verify.

$$
\begin{gathered}
\tan ^{2} \theta\left(\frac{1}{\sec ^{2} \theta}\right) \mp \cot \theta \tan (+\theta)=-\cos ^{2} \theta \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta-\left(\frac{1}{\tan \theta}\right) \tan \theta=-\cos ^{2} \theta \\
\sin ^{2} \theta-1=-\cos ^{2} \theta \\
-\cos ^{2} \theta=-\cos ^{2} \theta
\end{gathered}
$$

$$
\begin{gathered}
\frac{\sec \theta}{\sin \theta}=\frac{\sec \theta}{\csc (t \theta)}=\frac{1}{\tan \theta} \\
\frac{\frac{1}{\cos \theta}}{\frac{\sin \theta}{1}-\frac{\frac{1}{\cos \theta}}{\frac{1}{\sin \theta}}=\cot \theta} \\
\frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta}-\frac{1}{\cos \theta} \cdot \frac{\sin \theta}{1}=\frac{\cos \theta}{\sin \theta} \\
\frac{1}{\sin \theta \cos \theta}-\frac{\sin \theta}{\cos \theta} \cdot \sin \theta \\
\frac{1-\sin \theta}{\sin \theta \sin ^{2} \theta}=\frac{\cos \theta}{\sin \theta} \\
\frac{\cos ^{2} \theta}{x}= \\
\frac{\sin \theta \cos \theta}{x}= \\
\frac{\cos \theta}{\sin \theta}=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

$$
\begin{array}{cc}
\cot ^{4} B-\csc ^{4} B=1-2 \csc ^{2} B & \text { Big Powers (>2) } \\
(-1)\left(\cot ^{2} B+\csc ^{2} B\right)= & - \text { Factor } \\
\left.(-1)\left(\csc ^{2} B-1+\csc ^{2} B\right)=1-2 \csc ^{2} B\right) & x^{4}-y^{4} \\
(-1)\left(2 \csc ^{2} B-1\right) & \left.1+y^{2}\right)\left(x^{2}-y^{2}\right) \\
-2 \csc ^{2} \theta=\csc ^{2} \theta+1=1-2 \csc ^{2} B & \cot ^{2} \theta-\csc ^{2} \theta=-1 \\
1+\cot ^{2} B=\csc ^{2} B
\end{array}
$$

