Sums Product IDENTITIES SKMCharlien
Purpose - to switch between addition + multiplication of sines + cosines

$$
\begin{aligned}
\sin 40^{\circ}-\sin 100^{\circ} & =2 \cos \left(\frac{40^{\circ}+100^{\circ}}{2}\right) \sin \left(\frac{40^{\circ}-100^{\circ}}{2}\right) \\
& =2 \cos 70^{\circ} \sin \left(-30^{\circ}\right) \\
& =-2 \cos 70^{\circ} \sin 30^{\circ}
\end{aligned}
$$

Convert to a sum.

$$
\begin{aligned}
& \text { avert to a sum. } \\
& \begin{aligned}
\cos 4 x \sin 12 x & =\frac{1}{2}[\sin (4 x+12 x)-\sin (4 x-12 x)] \\
& =\frac{1}{2}[\sin 16 x+\sin (+8 x)]
\end{aligned}
\end{aligned}
$$

Identities Review
Write 8 fund. identities

$$
\begin{array}{ll}
\begin{array}{ll}
\text { True/False } \\
\# /-10 & \tan 120^{\circ}
\end{array}=\sqrt{\frac{1 \oplus \cos 290^{\circ}}{1 \theta \cos 290^{\circ}}} \text { Falso } \\
& \tan 120^{\circ}=\sqrt{\frac{1-\cos 60^{\circ}}{1+\cos 60^{\circ}}} \text { False } \\
& \frac{\tan 120^{\circ}}{\pi}
\end{array}=\sqrt{\frac{1-\cos 240^{\circ}}{1+\cos 290^{\circ}}} \text { False }
$$

Evaluate. \leftarrow Solution is

$$
\begin{aligned}
\frac{2 \tan 165^{\circ}}{1-\tan ^{2} 165^{\circ}} & =\tan \left(2.165^{\circ}\right) \\
& =\tan 330^{\circ} \\
& =-\frac{\sqrt{3}}{3}
\end{aligned}
$$

\#15-20 - Draw a picture!
16. Given $\cot x=-\frac{4}{5} \frac{x}{y}$

$$
\frac{\pi}{2}<x<\pi
$$

$$
\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \cdot \tan y}
$$

$$
=\frac{\frac{5}{-4}+\frac{5}{12}}{1+(-5 / 4)\left(-\frac{5}{12}\right)}
$$

$$
144+y^{2}=169
$$

$$
\begin{aligned}
& y^{2}=25 \\
& y=5
\end{aligned}
$$

$$
=\frac{-\frac{15}{12}+\frac{5}{12}}{\frac{48}{48} 1+\frac{25}{48}}=\frac{-\frac{10}{12}}{\frac{13}{48}}=\frac{-10}{12} \cdot \frac{48}{73}=\frac{-40}{73}
$$

Find $\cos \frac{A}{2}$ given $\sin A=\frac{3}{5}+A \operatorname{in} Q$ IV.

$$
\frac{\text { Verify }}{\# 21-31}=4 \text { problems } \leq \begin{aligned}
& 1 \text { Easy } \\
& 2 \\
& 2 \\
& 1
\end{aligned}
$$

31) $\frac{\sin 6 \theta \cos 4 \theta}{\text { sun ra .d }}-\underbrace{\sin 3 \theta \cos 7 \theta}_{\text {sun } 4 \text { prod }}=\frac{\sin 3 \theta \cos \theta_{c}}{\text { sum a prod }}$
