

February 25, 2022

Evaluat.

$$
\operatorname{Cos}^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
$$

$\operatorname{Arccot}(-\sqrt{3})=\frac{5 \pi}{6}$

$$
\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}
$$

$\operatorname{Arcsec}(-1)=\pi$

$$
\begin{aligned}
& \begin{array}{l}
\cos \left(\frac{\operatorname{Arctan} \sqrt{3}}{\theta}\right) \quad 1 / 1 / 6 \\
\cos \left(\frac{\pi}{6}\right)=\frac{1}{2}
\end{array} \\
& \operatorname{Cos}^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4} \\
& \tan \left(\cos ^{-1} \frac{\sqrt{2}}{2}\right)=1 \\
& \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ln e^{8}=8
\end{aligned}
$$

$$
\begin{aligned}
& \sec \left(\operatorname{Arccsc} \frac{x}{4}\right) \frac{r}{y} \\
& \frac{\left.1 x\right|_{4} ^{a}}{\frac{a}{x^{3}-16}} \\
& a^{2}+16=x^{2} \\
& \sec \theta=\frac{r}{x}=\frac{x}{\sqrt{x^{2}-16}} \\
& \sin (2 \underbrace{\cos ^{-1}(-2 / 3)}_{\theta}))^{\frac{x}{r}} \\
& \sin (2 \theta)=\frac{\sqrt{5}}{-2} \\
& 2 \sin \theta \cos \theta \quad 4+y^{2}=9 \\
& -2\left(\frac{\sqrt{5}}{3}\right)\left(\frac{-2}{3}\right) \\
& =\frac{-4 \sqrt{5}}{9} \text {. } \\
& \cos (\operatorname{Arctan}(1 / 3)-\operatorname{Arccse}(-5 / 4)) \\
& \cos (A-B) \\
& =\cos A \cos B+\sin A \sin B
\end{aligned}
$$

Inverse Trig Equations
Solve for x.

$$
\begin{aligned}
& 4+2 \sin (x-3)=5 y \\
& -4 \\
& \frac{2 \sin (x-3)=\frac{5 y-4}{2}}{\sin ^{2}(x-3)=\frac{5 y-4}{2}} \\
& \sin ^{-1}\left(5 y-\frac{4}{2}\right)=x-3 \\
& \sin ^{-1}\left(5 y-\frac{4}{2}\right)+3=x
\end{aligned}
$$

1) Isolate the trig function.
2) Switch the insole tootsie
3) Solve fortis needed.

Solve for y

$$
\begin{aligned}
& \tan \left(\frac{-\pi}{4}\right)=y \\
& -1=y
\end{aligned}
$$

