$$
\begin{aligned}
& \text { SUM + DIFFERENCE |DENTITIES } \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \cos \left(\frac{A}{9}+\frac{B}{90^{\circ}}\right)=\cos 30^{\circ} \cdot \cos 60^{\circ}-\sin 30^{\circ} \sin 60^{\circ} \\
& 0=\left(\frac{\sqrt{3}}{2}\right)(1 / 2)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& \sin \left(A+B^{\prime}\right)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin \cos B-\cos A \sin B \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A-\tan B}
\end{aligned}
$$

Tor F

$$
\begin{aligned}
& F \sin 70^{\circ}=\sin 20^{\circ} \cos 50^{\circ}-\cos 20^{\circ} \sin 50^{\circ} \\
& \sin (A \Theta B)=\sin \left(200^{-}-50^{\circ}\right) \\
& T \tan 110^{\circ}= \frac{\left.\tan 80^{\circ}+\tan 30^{\circ}-30^{\circ}\right)}{1-\tan 80^{\circ} \tan 30^{\circ}}=\tan \left(30^{\circ}+30^{\circ}\right)=\tan 110^{\circ}
\end{aligned}
$$

Evaluate. (Answer is a $\#$ )

$$
\begin{gathered}
\sin \frac{5 \pi}{4} \cos \frac{\pi}{2}-\cos \frac{5 \pi}{4} \sin \frac{\pi}{2} \\
\sin \left(\frac{5 \pi}{4}-\frac{\pi}{2}\right) \\
\sin \left(\frac{5 \pi}{4}-\frac{2 \pi}{4}\right) \\
\sin \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}
\end{gathered}
$$



Find $\cos (A+B)$ given $\tan A=-\frac{\sqrt{5}}{2} \frac{b}{x} \csc B=-\frac{3}{r} \frac{r}{9}$

$$
\frac{\pi}{2}<\frac{A}{\text { II }} \text { and } \frac{3 \pi}{2}<\frac{B<2 \pi}{\text { II }}
$$

$$
\cos (A+B)=\frac{x}{\frac{x}{5}} A \cos B-\frac{y / r}{\sin A \sin B}
$$

$\cos \left(\frac{-2}{3}\right) \cos \left(\frac{\sqrt{2}}{3}\right)$


$$
\begin{aligned}
& \left(\frac{-2}{3}\right)\left(\frac{2 \sqrt{2}}{3}\right)-\left(\frac{\sqrt{5}}{3}\right)\left(\frac{-1}{3}\right) \\
& -\frac{4 \sqrt{2}}{9}+\frac{\sqrt{5}}{9} \\
& =\frac{-4 \sqrt{2}+\sqrt{5}}{9}
\end{aligned}
$$



Verify.

$$
\begin{aligned}
\frac{\sin (x+y)}{\cos x \cos y} & =\tan x+\tan y \\
\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y} & \frac{(\cos y) \sin x}{(\cos ) \cos x}+\frac{\sin y \cos x}{\cos y \cos x} \\
& =\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y}
\end{aligned}
$$

Hut \# $63 \quad \cos \left(\frac{\pi}{2}+\frac{x}{A}+B\right)=-\sin x$

$$
\cos \frac{\pi}{2} \cos x-\sin \pi / 2 \sin x=
$$

