$$
\begin{aligned}
& \text { More DISK METTHOD } \\
& \pi \int_{a}^{b}\left(r_{0}^{2}-r_{i}^{2}\right) d x \\
& x^{600}=3 \pi \int_{2}^{x} \int_{2}^{6}\left[(f-3)^{2}-(h-3)^{2}\right] d x \\
& x_{y=10}^{60 x t} \pi \int_{2}^{6} \int_{2}\left[(10-h)^{2}-(10-f)^{2}\right] d x \\
& \left.\stackrel{\text { about }}{x=-5} \pi \int_{0}^{7}\left[(f-s)^{2}-(g=s)^{2}\right] d y\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { About } \\
& \pi \int_{0}^{x=7}\left[(7-g)^{2}-(7-f)^{2}\right] d y \\
& C_{0}^{A}
\end{aligned}
$$

Volume by Slicing

Base is formed by

$$
y=x^{2} \quad y=4
$$

Cross sections are squares.

$$
\begin{aligned}
& A=S^{2} \\
& V=\int_{-2}^{2}\left(4-x^{2}\right)^{2} d x= \\
& \text { _units }{ }^{3} \\
& \text { Isosceles Right } \Delta^{\prime} \text { 's } \\
& A=\frac{1}{2} b \cdot h=\frac{1}{2} b^{2} \\
& \frac{1}{2} \int_{-2}^{2}\left(4-x^{2}\right)^{2} d x
\end{aligned}
$$

Semi-circles $A=\frac{1}{2} \pi r^{2}$

$$
\frac{\text { Base }}{y=\sqrt[3]{x}} \quad y=-\frac{1}{2} x+6 \quad x=0
$$

Cross sections are equilateral

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2} \cdot s \cdot \frac{\sqrt{3}}{2} s \\
& A=\frac{\sqrt{3}}{4} s^{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{\Delta}{s / s} s^{s / 30} s \\
h=\sqrt{3} \cdot \frac{1}{2} s \\
=\frac{\sqrt{3}}{2} s
\end{array} \quad \frac{\sqrt{3}}{4} \int_{0}^{8}\left(-\frac{1}{2} x+6-\sqrt[3]{x}\right)^{2} d x\right)
$$

