Business Apple. of Diff. EQ.
The marginal revenue for digital watches is expressed by $\int \frac{d R}{d x}=\int 69000-\frac{40000}{x^{2}}$ dollars per thousand. If total Sales revenue is $\$ 38,000$ when 1000 watches are sold, What will revenue be for 4000 watches s ?

$$
\left.\begin{array}{l}
R(x)=\int\left(60,000-40,000 x^{-2}\right) d x \\
R(x)=60,000 x+\frac{40000 x^{-1}}{+1}+C \\
R(x)=60,000 x+\frac{40000}{x}+C \\
38,000=60000+40000+C \\
-100,000 \\
-62,000=C \\
R(x)=60,000 x+40000 \\
x
\end{array}\right)
$$

4000 watches

$$
\begin{aligned}
R(4) & =240,000+10,000-62,000 \\
& =188,000
\end{aligned}
$$

(b) $C(x)=2000 x^{2}+\frac{40000}{x}+20,000$

How many watches sold to maximize profit?
Max production is 20,000 watches.

$$
\begin{aligned}
& P=R-C \quad R(x)=60,000 x+40000-62,000 \\
& P(x)=60,000 x+\frac{40006}{x}-62000+\left[2000 x^{2}+400100-20,000\right] \\
& P(x)=-2000 x^{2}+60,000 x-82,000
\end{aligned}
$$

1) Find critical pt.

$$
[0,20]
$$

$$
P^{\prime}(x)=-4000 x+60,000=0
$$

$$
P(0)=-82,000
$$

$$
\begin{gathered}
60,000=4000 x \\
15=x
\end{gathered}
$$

$$
P(15)=368,000
$$

$$
P(20)=3,8,000
$$

Produce 15,000 watches

Hyperbolic Functions

- Combinations of $e^{x}+e^{-x}$
- properties of trig functions
- connected through complex numbers

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Catenary $y=a \cosh \left(\frac{x}{a}\right)+c$

$$
\sinh (\ln 3)=\frac{e^{\ln 3}-e^{-\ln 3^{-1}}}{\frac{3-1 / 3}{2}=\frac{\frac{8 / 3}{2}-\frac{1}{2}}{1}}
$$

Derivatives

$$
\begin{aligned}
& \frac{\text { Derivatives }}{\frac{d}{d x} \sinh x=\cosh x \quad *} \quad \frac{d}{d x} \cosh x=\sinh x \\
& \frac{d}{d x} \tanh x=\operatorname{sech}^{2} x \quad \frac{d}{d x} \operatorname{coth} x=-\operatorname{csch}^{2} x \\
& * \frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tanh x \quad \frac{d}{d x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x \\
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& f(x)=\underbrace{\operatorname{coth} x} \cdot e^{\operatorname{csch}\left(x^{3}\right)} \text { Find } f^{\prime}(x) \\
& f^{\prime}(x)=\operatorname{coth} x \cdot \underbrace{e^{\operatorname{csch} x^{3}} \cdot-\operatorname{csch}\left(x^{3}\right) \operatorname{coth}\left(x^{3}\right) \cdot 3 x^{2}}+\underbrace{e^{\operatorname{csh} x^{3}}} \underbrace{-\operatorname{csch}^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sinh ^{7} x \cosh x d x \quad
\end{aligned} \quad \begin{aligned}
u & =\sinh x \\
& \int u^{7} \cosh x \cdot \frac{d u}{\cosh x} \\
= & \frac{u^{8}}{8}+C \\
= & \frac{\sinh ^{8} x}{8}+C
\end{aligned}
$$

