Applications of Integration
Differential Equations

$$
\begin{aligned}
& \begin{array}{l}
\int \frac{d^{2} y}{d x^{2}}=\int 24 x^{2}+18 x+4 \\
\frac{d y}{d x}=\frac{24 x^{3}}{3}+1 \frac{8 x^{2}}{a}+4 x+c \text { particular solution } \\
\text { Solve force. }
\end{array} \\
& \int \frac{d y}{d x}=\int 8 x^{3}+9 x^{2}+4 x+C_{1} \\
& y=2 x^{4}+3 x^{3}+2 x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Find particular solution. $y=-1$ when $x=0$

$$
\left.\begin{array}{rlrl}
\int \frac{d^{2} y}{d x^{2}} & =\int 3 x^{2} & \Rightarrow y^{\prime} & =9 \text { when } x=2 \\
\frac{d y}{d x} & =x^{3}+C \\
9 & =(2)^{3}+C & \int \frac{d y}{d x} & =\int x^{3}+1 \\
9 & =8+C & y & =\frac{1}{4} x^{4}+x+C \\
1 & =C & & -1
\end{array}\right)=0+0+C .
$$

Motion $s(t) \leftarrow$ position

$$
\begin{aligned}
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& a=-32 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

leprechaar $a(t)=v^{\prime} \cdot(t)=s^{\prime \prime}(t)$

What is maximum height?

$$
\begin{aligned}
0 & =-9.8 t+39.2 \\
9.8 t & =\frac{36.2}{9.8} \\
t & =4 \mathrm{sec} \\
S(4) & =-4.9(4)^{2}+39.2(9)+98 \\
& =176.4 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& a(t)=-9.8 \\
& V(t)=-9.8 t+c \\
& 39.2=0+C \\
& V(t)=-9.8 t+39.2
\end{aligned}
$$

$$
S(t)=-4.9 t^{2}+39.2 t+C
$$

$$
98=\dot{i}+0+C
$$

$$
S(t)=-4.9 t^{2}+39.2 t+98
$$

How fast will he be moving when te reaches the pot of gold.

$$
\begin{aligned}
& 1=-4.9 t^{2}+39.2 t+98 \\
& 0=-4.9 t^{2}+39.2 t+97
\end{aligned}
$$

$$
\begin{aligned}
& 2 t+1 \\
& 1 \text { quale. }
\end{aligned}
$$

$$
0=-4.9\left(t^{2}-8 t-20\right)
$$

$$
-4.9(t-10)(t+2)
$$

$$
t=10,-2
$$

10 sec .

$$
\begin{aligned}
V(10) & =-9.8(10)+39.2 \\
& =-58.8 \mathrm{~m} / \mathrm{s} \approx 131.59 \mathrm{mi}
\end{aligned}
$$

Will L_{1} catch Constant in
L_{2} before $L_{1} 1004 t=1600 \mathrm{ft}$.
the finish dire. L_{2}
L_{1}
$a(t)=0$
$V(t)=25$
$S(t)=25 t+c$
$0=25(0)+c$
$S(t)=100 t$
L_{2}
$a(t)=10$
$a=10 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ after 2 sec
$V(t)=10 t+C$
$30=10(2)+C$
$30=20+c$
to $=c$
$V(t)=10 t+10$
$S(t)=5 t^{2}+10 t+C$
$800=0+0+C$
$s(t)=5 t^{2}+10 t+800$

