

$$
\begin{aligned}
& \angle C=180^{\circ}-122^{\circ}=58^{\circ} \\
& \frac{a}{\sin 52^{\circ}}=\frac{232 \cdot \sin 52^{\circ}}{\sin 58^{\circ}}
\end{aligned}
$$

Find all missing parts.

$$
\begin{aligned}
a & =216 \\
\frac{b}{\sin 70^{\circ}} & =\frac{232-\sin 70^{\circ}}{\sin 58^{\circ}} \\
b & =
\end{aligned}
$$

Ambiguous Case of Law of Sines (SSA) unclear, more than I possibility

Find B.

$$
\begin{aligned}
& \frac{\sin C}{25}=\frac{\sin 56^{\circ}}{9}-25 \\
& \begin{array}{l}
\sin C=2.3-\pi^{\text {not }} \\
\sin ^{-1}(2.3) \text { Nossibe }
\end{array} \\
& \left.\Delta\right|_{(\mathrm{g}, \mathrm{~m})}
\end{aligned}
$$

Find B.

$$
\begin{array}{rl}
180^{\circ} & B \\
-120.3 & B 9.7^{\circ} \left\lvert\, \begin{array}{l}
A= \\
B^{\prime}=8.3^{\circ} \\
\\
\hline 155.7+56^{\circ}=171.7
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
& \frac{\sin C}{25}=\frac{\sin 56^{\circ}}{23} \cdot 25 \\
& \sin C=0.9011 . \\
& \sin ^{-1}(0.9011)=64.3^{\circ} \\
& \begin{array}{c|c}
\Delta \# 1 & \Delta^{\# 2} \\
\hline=64.3^{\circ} & C^{\prime}=180-64.3^{\circ}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& B=59.7^{\circ} \text { OR } 8.3^{\circ}
\end{aligned}
$$

To check for Ind Δ
when SSA

1) Solve Law of Sines to get first angle $\left(A_{1}\right)$
2) $A_{2}=180^{\circ}-A_{1}$
3) $A_{2}+\underset{\substack{\text { Given } \\ \text { angle }}}{\text { 2) }}<180^{\circ}$, then $2 A^{\prime}$ s
$A_{2}+\begin{gathered}\text { Givengle } \\ \text { angle }\end{gathered} \geq 180^{\circ}$, then no and Δ

$$
\begin{aligned}
& \text { Law of Cosines } \\
& \text { SAl, SSS } \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{coc} C \\
& \begin{array}{ll}
A(c \cos B, c \sin B) & \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \\
\hdashline a & C a, 0)
\end{array} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

S55 = Law of Cosines

$$
\begin{aligned}
C^{2} & =a^{2}+b^{2}-2 a b \cos C \\
44^{2} & \left.=37^{2}+56^{2}-2(37) 56\right) \cos C
\end{aligned}
$$

Find C. $\left.\quad 44^{2}-37^{2}-56^{2}=-2(37) 56\right) \cos C$

$$
\begin{aligned}
\frac{44^{2}-37^{2}-56^{2}}{-2(37)(56)} & =\cos C \\
0.6199 & =\cos C \\
51.7^{\circ} & =C
\end{aligned}
$$

