$$
\begin{aligned}
& \text { 40) } 8 \cos \theta=\cot \theta \\
& \sin \theta\left[8 \cos \theta=\frac{\cos \theta}{\sin \theta}\right] \\
& 8 \sin \theta \cos \theta=\cos \theta \quad\left[0^{\circ}, 360^{\circ}\right] \\
& 8 \sin \theta \cos \theta-\cos \theta=0 \\
& \cos \theta(8 \sin \theta-1)=0 \\
& \cos \theta=0 \quad 8 \sin \theta-1=0 \\
& x \quad \sin \theta=\frac{1}{8} \\
& x \quad \sin ^{-1}(118)=7.2^{\circ}
\end{aligned}
$$

$$
90^{\circ}, 270^{\circ}, 7.2^{\circ}
$$

172.8°

26

$$
\begin{aligned}
& \cos ^{2} \theta=\sin ^{2} \theta+1 \\
& 1-\sin ^{2} \theta=\sin ^{2} \theta+广 \quad\left[0^{\circ}, 340^{\circ}\right) \\
& 0=2 \sin ^{2} \theta \\
& \sqrt{0}=\sqrt{\sin ^{2} \theta} \quad 180,0^{\circ} \\
& 0=\sin \theta \quad 0^{\circ}, i 80^{\circ}
\end{aligned}
$$

16

$$
\begin{aligned}
& 2 \cos ^{2} x-\sqrt{3} \cos x=0 \\
& \cos x(2 \cos x-\sqrt{3})=0 \\
& \cos x=0 \quad \cos x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Trig Equations Part
Use Identities

1) When there are different trig functions.
2) When there are different angles.

$$
\begin{aligned}
& {[2 \sin x]^{2}=[1-2 \cos x]^{2} \uparrow \quad\left[0^{\circ}, 360^{\circ}\right)} \\
& 4 \sin ^{2} x=(1-2 \cos x)(1-2 \cos x) \\
& \text { \#6: } \sin ^{2} x+\cos ^{2} x=1 \\
& \text { must check } \\
& 4 \sin ^{2} x=1-4 \cos x+4 \cos ^{2} x \\
& \text { answers. } \\
& 4\left(1-\cos ^{2} x\right)=1-4 \cos x+4 \cos ^{2} x \\
& 4-4 \cos ^{2} x=1-4 \cos x+4 \cos ^{2} x \\
& 0=8 \cos ^{2} x-4 \cos x-3 \\
& 0-(8 \cos x \sim-1)(\cos x \sim 4) \\
& \cos x=\frac{4 \pm \sqrt{16-4(8)(-3)}}{2(8)}=\frac{4 \pm \sqrt{112}}{16} \\
& \cos x=0.911 \quad \cos x=-0.411 \\
& \cos ^{-1}(0.911)=24.3^{\circ} \\
& 65.7^{\circ} \\
& x=2 \pi 3^{6}, 335.7^{\circ}, 114.3^{\circ}, 240.7^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\sin x=\cos \left(\frac{x}{2}\right) \\
(\sin x)^{2}=\left(\pm \sqrt{\frac{1+\cos x}{2}}\right)^{2} \\
\sin ^{2} x=\frac{1+\cos x}{2} \\
2\left(1-\cos ^{2} x=\frac{1+\cos x}{\pi 2}=2\right. \\
2-2 \cos ^{2} x=-\frac{1+\cos x}{2}=2 \cos ^{2} x+\cos x-1 \\
0=(2 \cos x-1)(\cos x+1) \\
\cos x=\frac{1}{2} \cos x=-1 \\
x=\frac{\pi}{3}, \frac{\pi}{3}, \pi
\end{gathered}
$$

$$
\begin{aligned}
& \sin x-\sin 2 x=0 \\
& \sin x-2 \sin x \cos x=0 \\
& \sin x(1-2 \cos x)=0 \\
& \sin x=0 \quad 1-2 \cos x=0 \\
& \frac{1}{2}=\cos x
\end{aligned}
$$

Inverse Trigg Eavations
Know 8 fund. Identither
Know inv. triq func quadrants (for pts.)
$\operatorname{Sin}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
Sulution: angle in radicas

$\sec \theta=\frac{r}{x}=\frac{\sqrt{58}}{3}$

$$
\tan \left(\operatorname{Sin}^{-1}-\frac{\sqrt{2}}{2}\right)
$$

numerice valwo $\tan \left(-\frac{\pi}{4}\right)$

$$
\csc \left(\sec ^{-1} \frac{x}{5}\right) \frac{r}{x}
$$

$$
\begin{aligned}
& y^{2}+25=x^{2} \\
& \sqrt{y^{2}}=\sqrt{x^{2}-25} \\
& \operatorname{coc} \theta=\frac{r}{y}=\frac{x}{\sqrt{x^{3}-55}}
\end{aligned}
$$

1) Dobble Anqle
2) $S u m+D_{i}$ ft $\cos (2 \theta)$
$\sin [A-B]$
2 pictures!

$$
\begin{aligned}
& \cos \left(2 \underset{\operatorname{Arcsin}-\frac{3}{4}}{ }\right) \\
& \cos (2 \theta) \\
& =1-2 \sin ^{2} \theta \\
& =1-2\left(-\frac{3}{4}\right)^{2} \\
& 1-2-\frac{9}{16}=1-\frac{18}{16}=-\frac{2}{16}=-\frac{1}{8}
\end{aligned}
$$

