Operations in Polar Form

$$
\begin{aligned}
& 2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) \cdot 5\left(\cos 70^{\circ}+i \sin 70^{\circ}\right) \\
& 10\left(\frac{\cos 30^{\circ} \cos 70^{\circ}+i \cos 30^{\circ} \sin 70^{\circ}+i \operatorname{in} 30^{\circ} \cos 70^{\circ}}{10\left[\cos \left(30^{\circ}+70^{\circ}\right)+i \sin 30^{\circ} \sin 70^{\circ}\right.}\right) \\
& \left.=10\left[\cos 100^{\circ}+i 0^{\circ}\right)\right] \\
& \begin{array}{l}
r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)= \\
r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right. \\
= \\
37\left(\cos 211^{\circ}+i \sin 211^{\circ}\right) \cdot 4\left(\cos 348^{\circ}+i \sin 348^{\circ}\right) \\
211+368
\end{array} \\
& 148\left(\cos 559^{\circ}+i \sin 559^{\circ}\right)
\end{aligned}
$$

$$
\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)
$$

Divide a change to rectangular form.

$$
\begin{aligned}
\frac{15\left(\cos 340^{\circ}+i \sin 340^{\circ}\right)}{3\left(\cos 550^{\circ}+i \sin 550^{\circ}\right)} & =5\left(\cos \left(340^{\circ}-550^{\circ}\right)+i \sin \left(340^{-5} 0^{\circ}\right.\right. \\
\frac{1}{30} / & =5\left[\cos \left(+20^{\circ}\right) F i \sin \left(+210^{\circ}\right)\right] \\
& =5\left[-\frac{\sqrt{3}}{2}+i\left(\frac{1-1}{2}\right)\right] \\
& =-\frac{5 \sqrt{3}}{2}+\frac{5}{2} i
\end{aligned}
$$

Demure's Theorem

$$
\begin{aligned}
{[r(\cos \theta+i \sin \theta)]^{3} } & =r^{3}(\cos 3 \theta+i \sin 3 \theta) \\
\operatorname{sor}^{n}[r(\cos \theta+i \sin \theta)]^{n} & =r^{n}[\cos (n \cdot \theta)+i \sin (n \cdot \theta)]
\end{aligned}
$$

$(2 \sqrt{2}-2 i \sqrt{2})^{6}$

$(2 \sqrt{2})^{2}+(-2 \sqrt{2})^{2}=r^{2}$ $8+8=r^{2}$ $\sqrt{16}=\sqrt{r^{2}}$ $4=r$

1) Change to polar form
2) Use De moire's The to do $6^{\text {th }}$ pole,
3) Convert back to rectangular

$$
\theta=315^{\circ}
$$

$\left[4\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)\right]^{6}$
$4096\left(\cos 315^{\circ} \cdot 690^{\circ}+i \sin 1890^{\circ}\right)$ $4096(0+i(1))$

$$
=0+4096 i
$$

When is polar form better? 1) complex \# raised to a power

$$
\left(x^{4}\right)^{1 / 4}=(1236)^{1 / 4}
$$

2) finding roots of a complex \#

Solve.
2) $\left[8\left(\cos 540^{\circ}+i \sin 540^{\circ} 0^{\circ} \cdot 1 / 3\right.\right.$

$$
\theta=180^{\circ}
$$

$$
2\left(\cos \frac{540^{\circ} \cdot 1 / 3}{\left(80^{\circ}+i \sin 180^{\circ}\right)}\right.
$$

$$
2(-1+0)=-2
$$

3). $\left[8\left(\cos 900^{\circ}+i \sin 900^{\circ}\right)\right]^{1 / 3}$ $=2\left(\cos 5000^{\circ} i \sin 300^{\circ}\right)$

$$
\begin{aligned}
& =2(1 / 2+i \\
& =1-i \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}+8=0 \\
& \left(x^{3}\right)^{1 / 3}=(-8)^{1 / 3} \\
& \left.x^{3}=(-8+0 i)^{1 / 3} \quad 1\right)\left[\begin{array}{l}
8\left(\cos \frac{180^{\circ}}{180^{\circ} \cdot 1 / 3}+i \sin 180^{\circ}\right)
\end{array}\right]^{1 / 3} \\
& 9000^{\circ} \\
& =2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \\
& 2\left(1 / 2+i^{\sqrt{3}} 2\right)=1+i \sqrt{3} \\
& r=8
\end{aligned}
$$

1) Isolate the variable.
2) Eliminate the power on the variable by using the $1 / n$ power.
3) Change to polar form.
4) Apply DeMoivre's Theorem.
5) Get additional answers by taking $(1 / \mathrm{n}) \cdot 360^{\circ}$ and add to first answer.

$$
x^{4}-(-5-2 i)=0
$$

$$
\left(x^{4}\right)^{1 / 4}=(-5-2 i)^{1 / 4}
$$

$$
-2 \sqrt{-5}+
$$

$$
\tan \theta=\frac{12}{+5}
$$

$$
\theta=201.80
$$

$$
\begin{aligned}
& {\left[\sqrt{29}\left(\cos 201.8^{\circ}+i \sin 201.8\right)^{\frac{1}{4}}\right.} \\
& (\sqrt{2 i})^{1 / 4}=\left(29^{1 / 2}\right)^{1 / 4} \\
& 201.8^{\circ} \cdot \frac{1}{4} \\
& 29^{1 / 8}\left(\cos 50.45^{2}+i \sin 50.45^{3}\right)
\end{aligned}
$$

Find the $4^{\text {th }}$ roots of $(-5-2 i)$
2) $29^{1 / 8}$ cis 140.45°
3) $29^{1 / 8} \mathrm{c} / 5230.45^{\circ}$
4) $22^{1 / 8}$ cis 320.45^{5}

