$$
\begin{aligned}
& \text { Binomial Expansiow Treorem } \\
& (x+y)^{0}=1 \\
& (x+y)^{\prime}=(x+k \\
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=x_{y}^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x+y)^{5}=1 x^{3} y^{+5 x^{2} y^{2}+10 x^{2} y^{2}+10 x^{2} y^{3}+5 x y^{4} y^{2}+1 x^{2} y^{5}}
\end{aligned}
$$

$$
\begin{aligned}
(3 x-2 y)^{4}= & \left.1(3 x)^{4}(-2)^{2}+4(3 x)^{3}(-2 x)^{1}+6(3 x)^{2}(-2 y)^{2}+4(3 x)^{1}(-2 y)^{3} \cdot(2 x)^{2}(-2 y)^{4}\right) \\
& (3 x)^{4}-4(3 x)^{3}(2 y)+6(3 x)^{2}(2 y)^{2}-4(3 x)^{2}(2 y)^{4}+(2 y)^{4} \\
& 4 \cdot 3^{3} \cdot 2 \quad 6 \cdot 3^{2} \cdot 2^{2} 4 \cdot 3 \cdot z^{3} \\
& 81 x^{4}-216 x^{3} y+216 x^{2} y^{2}-96 x y^{3}+16 y^{4}
\end{aligned}
$$

Find the $4^{\text {th }}$ term of $(3 x-2 y)^{4}$.

$$
{ }_{4} C_{3}(3 x)^{\prime}(-2 y)^{3} \leftarrow \begin{gathered}
\text { power on } y \text { is } \\
\text { one less than } \\
\text { number of term }
\end{gathered}
$$ one less of term.

Cabuat: ${ }_{4} C_{3} \cdot 3^{1} \cdot(-2)^{3}=-96$

$$
=-96 x^{1} y^{3}
$$

Find the $7^{\text {th }}$ term of $(5 x-4 y)^{10}$

$$
\begin{aligned}
& { }_{10} C_{6}(5 x)^{4}(-4 y)^{6} \\
& { }_{10} C_{6} \cdot 5^{4} \cdot(-4)^{6} \\
& =537,600,000 x^{4} y^{6}
\end{aligned}
$$

Binomial Probability
D) 2 po ssible outcomes
2) Independent Events - same chance every thin the action is perfumed

Kirby kicker - makes 65% of field goals under 40 yards.
What is the probability hits exactly 5 of his next 7 attempts?

$$
\begin{aligned}
& { }_{7} C_{2} S^{5} F^{2} \\
& { }_{7} C_{2}(0.65)^{5}(0.35)^{2} \approx 0.298
\end{aligned}
$$

10 Questions - Must Choice

$$
A_{6} B_{1} C_{1} D
$$

What is prob of exactly 8 night?

$$
\begin{aligned}
& { }_{10} C_{2} R^{8} W^{2} \\
& { }_{10} C_{2}(0.25)(0.75)^{2}=0.000386
\end{aligned}
$$

