WORK Work $=$ Force \cdot distance
$=$ Newtons: $m=N_{m}=$ joules

$$
=1 \mathrm{bs} . \mathrm{ft}=\mathrm{ft} \cdot 1 \mathrm{l}
$$

20 lb of force/moved ol ft .

$$
W=20 \mathrm{lb} \cdot 10 \mathrm{ft}=200 \mathrm{ff} . \mathrm{lb} \text {. }
$$

Calculus - Force can vary

$$
W=\int_{0}^{50} F(x) d x
$$

$\omega_{\text {ell }}=40 \mathrm{ff}$ hap
Bucket weighs 30 lb . when full
Loses $\frac{1}{4} / \mathrm{b}$ for each ft . it is raised.
How much work is performed

$$
W=\int_{0}^{40}\left(30-\frac{1}{4} x\right) d x=1000 \mathrm{ft} \cdot 16
$$

Crane raises bucket of sand
Raises 50 ff in 10 sec
Sand spills out $10 \mathrm{lb} / \mathrm{sec}$.
 Cable weighs $5 \mathrm{lb} / \mathrm{ft}$.
How much work is needed to raise it 13.5 ft ?

$$
\begin{aligned}
& \int_{0}^{13.5}\left[\left(\begin{array}{l}
\text { buck } t \\
500-2 x)+5 x
\end{array}\right] d x \quad 10 \frac{\mathrm{lb}}{\mathrm{~s} / \mathrm{c}} \cdot \frac{10 \mathrm{sc}}{50 \mathrm{ft}}\right. \\
& \int_{0}^{13.5}(500+3 x) d x=9487 \mathrm{ff} 1 \mathrm{fb} \frac{16}{\mathrm{ft}} \text {. } \\
& \begin{array}{l}
1 h_{p}= \\
550=f \cdot b
\end{array}
\end{aligned}
$$

Springs
Hooke's Law

$$
F(x)=\overbrace{\substack{\text { spring } \\
\text { constant }}}^{K x} \begin{aligned}
& \text { distance } \\
& \text { Stretched } \\
& \text { or compressed }
\end{aligned}
$$

A spring with natural length of 1 m requires a force of 8 N to stretch it 3 m . How much work is required to stretch it from a length of $\frac{2 \mathrm{~m}}{\mathrm{~m}}$ to length of 4 m ?

$$
\begin{array}{ll}
F=K x \\
8=K \cdot 3 \\
8 & =K \\
F=8 / 3 x &
\end{array} \quad \int_{1}^{3} \frac{8}{3} x d x=\frac{32}{3} J
$$

