Sequences + Series
Sequence - a list of numbers that follow a pattern

$$
\begin{aligned}
& 1,2,3,4, \ldots \text { Arith } \\
& +1 \\
& 2,4,6,8, \ldots \text { Arith } \\
& +2,2,4,7,11 \\
& 1,2, \\
& 7,+2+3 \neq 9 \\
& 5,-15,45,-135,600 \mathrm{~m} \\
& \text { x } \\
& \text {-3 }
\end{aligned}
$$

Series - the sum of the numbers in a sequence
FIbonacci Sequence

$$
1,1,2,3,5,8,13,21, \ldots a_{n}
$$

$$
a_{1} a_{2} a_{3}^{\prime}
$$

$n=\#$ of terms last term Nature=
unKnown term
$S_{n}=$ sum of terms

Arithmetic sequences - add the same value to every tern

$$
\begin{aligned}
& \text { every term } \\
& d=\text { common difference }
\end{aligned}
$$

Geometric sequences multiply the same value to each term

$$
r=\text { common ratio }
$$

Find the first 4 terms.

$$
\begin{array}{ll}
a_{n}=4 n+2 & a_{n}=\frac{n+2}{2 n} \\
a_{1}=4(1)+2=6 & a_{1}=\frac{1+2}{2(1)}=\frac{3}{2} \\
a_{2}=4(2)+2=10 & a_{2}=\frac{2+2}{2(2)}=\frac{4}{4}=1 \\
a_{3}=4(3)+2=14 & a_{3}=\frac{3+2}{2(3)}=\frac{5}{6} \\
a_{4}=4(4)+2=18 & \text { Add 4 }=\text { Arithmetic }
\end{array}
$$

Summation Notation

$$
\begin{aligned}
\operatorname{sig}^{m \omega} \sum_{n=1}^{4}(2 n-3) & =[2(1)-3]+[2(2)-3]+[2(3)-3]+[2(9)-3] \\
& -1+1+3+5
\end{aligned}
$$

ARITHMETIC
$\sum_{i=1}^{n}(p i+q)$
$\xrightarrow{\text { Sum }} \sum_{j=22}^{50}\left(4_{j} a_{1}+7\right)$

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
\begin{aligned}
& n=50-22+1=29 \\
& a_{1}=4(22)+7=95
\end{aligned}
$$

$$
=\frac{29}{2}(95+2)
$$

$a_{n}=4(50)+7=207$

$$
=4379
$$

Arithmetic Sequences

- adds the same value to each term.

$$
\begin{aligned}
& 1,2,3,4 \ldots d=\text { common different, } \\
& 2,4,6,8 \quad=a_{2}-a_{1} \\
& 2,4,6,8, \ldots, d=2 \\
& 47,42,37,32 \ldots \\
& d=-5 \\
& 3,11,19_{1}, 27_{1}^{a_{4}-\cdots} \text { Find the } 200^{\text {th }} \text { term. } \\
& \begin{array}{ll}
3+8 \cdot 3+16 \int_{3+24}^{3+24} 3+8 \cdot 3 \\
3+8 \cdot 1 & d=8
\end{array} \quad a_{200}=3+8(199) \\
& a_{n}=a_{1}+d(n-1)
\end{aligned}
$$

$$
\begin{array}{lr}
\frac{17}{12}, \frac{5}{6}, \frac{1}{4}, \cdots . . & \text { Find } 8^{\text {th }} \text { term } \\
\frac{17}{12}, \frac{10}{12}, \frac{3}{12}, \cdots . & a_{8}=\frac{17}{12}+\frac{-7}{12}(8-1) \\
d=\frac{-7}{12} & a_{8}=-\frac{8}{3}
\end{array}
$$

$$
\begin{aligned}
& S_{n}=5+8+11+14=38 \\
& +\frac{S_{n}}{2 S_{n}}=\frac{14+11+8+S}{19+19+19+19} \quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& =4 .(19) \\
& \frac{2 S_{n}}{2}=\frac{76}{2} \\
& \text { Find } S_{n} \text {. } \\
& S_{n}=38 \\
& 52+64+76+\cdots \cdots+1816 \text {. } \\
& d=64-52=12 \\
& S_{n}=\frac{148}{2}(52+1816) \\
& =138,232
\end{aligned}
$$

