2/ $\frac{F e b}{20} 2530$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{n} & =\frac{11}{2}(20+70) \\
& =s^{4} 495
\end{aligned}
$$

$$
a_{n}=a_{1}+d(n-1)
$$

$$
\begin{aligned}
a_{9} & =a_{1}+d(n-1) \\
& =9+2(9-1) \\
& =25 \\
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& =\frac{9}{2}(9+25)=153 \text { mans }
\end{aligned}
$$

Geometric Sequences)
3,
multiply by

$$
\begin{aligned}
& r=\underset{\text { ratio }}{\text { common }}=4 \\
& r=\frac{a_{2}}{a_{1}}=\frac{12}{3}=4
\end{aligned}
$$

81, 54, 36,24....

$$
r=\frac{54}{81}=\frac{2}{3}
$$

$$
\begin{aligned}
& S_{1}-1 S_{1} 4 S_{1}-135, \ldots \\
& r=-3
\end{aligned}
$$

$$
r=\frac{24}{36}=\frac{2}{3}
$$

Find a_{8}.

$$
\left.\begin{array}{ll}
a_{2} & a_{3} \\
2, & 6,18 \\
2.3 & 18.9 \\
2 \cdot 3^{4} & 2.27 \\
2.3^{2} & 2.3^{2} \\
2.3^{3}
\end{array}\right\} r=3\left\{\begin{array}{l}
F \\
a_{n}=a_{1} \cdot r^{n-1}
\end{array}\right\} a
$$

$$
\begin{aligned}
150 & -60,24, \cdots \\
r & =\frac{-60}{150}=\frac{-2}{5} 02^{-0.4} \\
a_{8} & =a_{1} \cdot r^{n-1} \\
& =150 \cdot(-0.4)^{8-1} \\
& =-0.24576
\end{aligned}
$$

Population of Zeno, Ohio is decreasing by 8% per year. The population is currently 2100. What will it be in 7 years?

Find $8^{\text {th }}$ term.

$$
\begin{aligned}
a_{n} & =a_{1} \cdot r^{n-1} \\
a_{8}^{1} & =2100 \cdot(0.92)^{8-1} \\
& \approx 1171 \text { people }
\end{aligned}
$$

$$
\begin{array}{r}
100 \% \\
-8 \% \\
\hline 92 \%
\end{array}
$$

Growing by 5\%

$$
\begin{aligned}
& 100 \% \\
& \frac{f 5 \%}{105 \%} \\
& \approx 1.05
\end{aligned}
$$

Geometric Series

$$
\begin{aligned}
& 1 S_{4}=2+14+5 p+250 \quad \text { o } r=\frac{10}{2}=5 \text { or } \frac{50}{10}=5 \\
& -5 S_{4}=011 \text { so } 250 \quad 1250 \\
& -4 S_{4}=2 \quad-1250
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a_{1}-a_{1} \cdot r^{n-1} \cdot r^{1}}{1-r} \\
& \underset{\substack{\text { Know } \\
\text { number } \\
\text { rems } \\
\text { rems }}}{\substack{1-r \\
a_{1}-a_{1} r^{[n]} \\
1-r}}
\end{aligned}
$$

Find S_{n}.

$$
6+24+96+\cdots+6,291,456
$$

Know t
lis
fer

$$
\begin{aligned}
\text { term } \begin{aligned}
& S_{n}=\frac{a_{1}-a_{n} \cdot r}{1-r}=\frac{6-6291456 \cdot 4}{1-4} \\
&=8,388,600 \\
& 200-25+\frac{25}{8}-\frac{-25}{20}=-\frac{i}{8}
\end{aligned}
\end{aligned}
$$

Know\# of Germs $\quad \frac{\frac{25}{8}}{}=\frac{-2 s}{200}=\frac{-i}{8}$

$$
\begin{aligned}
& \# \text { of } \sigma_{\mathrm{ms}}{ }^{8} r=\frac{-25}{200}=\frac{-1}{8} \\
& \begin{aligned}
& S_{n}=\frac{a_{1}-a_{1} \cdot r^{n}}{1-r}=\frac{200-200 \cdot\left(-\frac{1}{8}\right)^{10}}{1-\frac{-1}{8}} \\
&=\frac{2,982,616,175}{16,777216} \\
& \approx 177.78
\end{aligned} \\
& \begin{aligned}
(2982616175)(16777216))
\end{aligned}
\end{aligned}
$$

Find Sum.
$4+12+36+108+\cdots . .=\infty \quad \begin{aligned} & r=3 \\ & \text { diverges }\end{aligned}$

$$
\begin{aligned}
& 4+2+1+\frac{1}{2}+\frac{1}{4}-+\frac{1}{7}-.5=8 \quad \text { converter } \\
& r=\frac{1}{2} \quad 0<|r|<1 \\
& \begin{aligned}
S_{n} & =\frac{a_{1}-a_{1} \cdot r^{n}}{1-r}=\frac{4-4\left(\frac{3}{2}\right)}{1-1 / 2}=\frac{4}{1-1 / 2}=\frac{4}{1 / 2} 9^{3} \\
S & =\frac{a_{1}}{1-r}
\end{aligned} \\
& S=\frac{a_{1}}{1-r}
\end{aligned}
$$

