Techniques of Integration
Integration by parts - integrate two unrelaíd

$$
\begin{array}{ll}
\int(f \cdot g)^{\prime}=\int f \cdot g^{\prime}+\int g \cdot f^{\prime} & \int x^{2} e^{x} d x \\
\int(f \cdot g)^{\prime}-\int g \cdot f^{\prime}=\int f \cdot g^{\prime} & \int f \cdot g^{\prime} d x \\
f \cdot g-\int g \cdot f^{\prime}=\int f \cdot g^{\prime} \\
\mu^{\prime} \cdot v-\int v \cdot d u=\int u \cdot d v
\end{array}
$$

$$
\begin{aligned}
& \int x \sec ^{2} x d x \\
& \int \underline{\mu} \cdot \underline{d r}=\mu v-\int v d u \\
& =x \tan x-\int \tan x d x \\
& =x \tan x-\int \frac{\sin x}{\cos x} d x \\
& u=x \leftarrow \\
& d v=\sec ^{2} x d x \\
& \begin{aligned}
u & =x \\
d u & =1 d x \quad d v=\tan x
\end{aligned} \\
& =x \tan x+\int \frac{\sin x}{1} \frac{d \operatorname{dn}}{\sin \sqrt{x} x} \\
& u=\cos x \\
& =x \tan x+\int \frac{1}{u} d u \\
& =x \tan x-\ln |a|+C \\
& =x \tan x-\ln |\cos x|+C \\
& d y=-\sin x d \alpha \\
& \frac{d \sin x}{-\sin x}=d x
\end{aligned}
$$

$$
\begin{aligned}
& \int \ln x d x \\
& u=\ln x \quad \int d v=\int d x \\
& =x \ln x-\int x \cdot \frac{1}{x} d x \\
& =x \ln x-\int 1 d x \\
& =x \ln x-x+C \\
& \int \ln (2 x) \\
& u=2 x \\
& d x=2 d x \\
& \int \ln u \frac{d u}{2} \\
& \frac{1}{2}[\mu \ln u-\mu]+C \\
& \frac{1}{2}[2 x \ln 2 x-2 x]+C \\
& x \ln 2 x-x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int x^{2} e^{2 x} d x \\
= & \frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x \quad d u=2 x d x \\
= & \frac{1}{2} x^{2} e^{2 x}+\left[\frac{-1}{2} x e^{2 x}+\int \frac{1}{2} e^{2 x} d x \quad \begin{array}{l}
\int d v=\int e^{2 x} d x \\
u=x
\end{array} \quad \begin{array}{l}
v=\int e^{4} \cdot \frac{d x}{2} \quad d u=2 x \\
v=\frac{1}{2} e^{u} d x \\
v=\frac{1}{2} e^{2 x} \\
d v=e^{2 x} d x \\
= \\
\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C
\end{array} \quad v=\frac{1}{2} e^{2 x}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int e^{x} \cos x d x \\
& =e^{x} \cos x+\int+e^{x} \sin x d x \quad \begin{array}{ll}
d x=-\sin x d x \quad & V=e^{x} \\
u=\sin x \quad d V=e^{x} d x
\end{array} \\
& d x=\cos x d x \\
& e^{x} \cos x d \bar{x} e^{x} \cos x+e^{x} \sin x-\int e^{x} \cos x d x \\
& 2 \int e^{x} \cos x d x=e^{x} \cos x+e^{x} \sin x \\
& \int e^{x} \cos x d x=\frac{1}{2}\left[e^{x} \cos x+e^{x} \sin x\right] \\
& =\frac{1}{2} e^{x}[\cos x+\sin x] \\
& \text { derive start } \\
& \text { with co- } \\
& \text { get - } \\
& \text { Inter = answer } \\
& \begin{array}{l}
\text { is cor } \\
\text { git nog }
\end{array} \\
& \text { gisog. }
\end{aligned}
$$

