$\frac{\text { PiRanetus }}{\text { (projectile motion) }}$

Equations
equations that desenbe the horizontal t vertical motion of an object in tics of the

$$
\begin{aligned}
& x=r \cos \theta \\
& x=100 t \cos \theta \\
& x_{E}=|v| t \cos \theta \\
& y_{t}=\frac{1}{2} a t^{2}+|V| t \sin \theta+s_{0}
\end{aligned}
$$

Garrett estimates the distance of the pin to be 220 yes. His swing will produce an initial velocity of tho fils at an angle of 28° Will the bael land in the hole?

$$
\begin{aligned}
& x_{t}=|v| t \cos \theta \\
& X_{t}=160 t \cos 28^{\circ} \\
& y_{t}=\frac{1}{2} a t^{2}+(V) t \sin \theta+S u \\
& y_{2}=\frac{1}{2}(-32) t^{2}+160 t \sin 28^{\circ}+0 \\
& \frac{660}{160 \cos 28^{\circ}}=\frac{160 t \cos 28^{\circ}}{16 p \cos 28^{\circ}} \\
& 4.7 \mathrm{sec}=t \\
& y=-16(4.7)^{2}+160(4.1) \sin 28^{\circ} \\
& =-0.39 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& x_{t}=60 t \cos 45^{\circ} \\
& y_{3}=\frac{1}{2}(-9.8) t^{2}+60 t \sin 48^{\circ}+1.4 \operatorname{Lan}_{\text {an }} \\
& 48^{\circ} \text { auth } \\
& 60 \mathrm{~m} / \mathrm{s} \\
& 1=-4.9 t^{2}+60 t \sin 48^{\circ}+1.4 \text { Where should he set } \\
& 0=-4.9 t^{2}+60 t \sin 98+0.4 \text { the target in order to } \\
& \text { hit the bullseye? } \\
& t=\frac{-60 \sin 48^{\circ} \pm \sqrt{\left(60 \sin 48^{2}-4(-4.9)(0.9)\right.}}{2(-4.9)} \\
& t=-0.009 \quad t=9.1 \mathrm{sec} \\
& x=60(9.1) \cos 48^{\circ}=365 m
\end{aligned}
$$

