Partial Fractions

$$
\begin{aligned}
& \int \frac{15 x-14}{\substack{x^{2}-3 x+2 \\
(x-2)(x-1)}} d x=\frac{A}{x^{\prime}-2}+\frac{B}{x^{\prime}-1} \\
& 15 x-14=A(x-1)+B(x-2) \\
& 15 x-14=A x-A+B x-2 B \\
& \begin{aligned}
15 & =A+B \\
-14 & =-A-2 B
\end{aligned} \quad\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
15 \\
-14
\end{array}\right]=\left[\begin{array}{c}
16 \\
-1
\end{array}\right] A \\
& \begin{array}{l}
u=x-2 \\
d u=d x
\end{array} \int \frac{16}{x-2} d x+\int \frac{-1}{x-1} d x \\
& u=x-1 \\
& d u=d x \\
& \int \frac{16}{u} d u \quad \int \frac{-1}{u} d u \\
& 16 \int \frac{1}{u} d u \\
& 16 \ln |u| \cdots \ln |u| \\
& \text { (16) } \ln |x-2|^{16}-\ln |x-1|+C \\
& \ln \frac{|x-2|^{16}}{|x-1|}+C
\end{aligned}
$$

$$
\begin{aligned}
& \left.\iint \frac{1-x^{2}}{4 x^{4}+17 x^{2}+4} d x=\frac{A x^{1}+B}{4 x^{2}+1}+\frac{C x+D}{x^{2}+4}\right]\left(\begin{array}{c}
\left(4 x^{2}+1\right) \\
\left(x^{2}+4\right)
\end{array}\right. \\
& \left(4 x^{2}+1\right)\left(x^{2}+4\right) \\
& 1-x^{2}=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(9 x^{2}+1\right) \\
& 1-x^{2}=A x^{3}+4 A x+B x^{2}+9 B+4 C x^{3}+C x+4 D x^{2}+D \\
& O=A+4 C \\
& \begin{array}{llll}
-1 & = & B+4 D \\
0 & =4 A & +C & +D
\end{array}\left[\begin{array}{llll}
1 & 0 & 4 & 0 \\
0 & 1 & 0 & 4 \\
4 & 0 & 1 & 0 \\
0 & 4 & 0 & 1
\end{array}\right]^{\prime \prime} \cdot\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right] \\
& 1=4 B+D \\
& =\left[\begin{array}{c}
0 \\
1 / 3 \\
0 \\
-1 / 3
\end{array}\right] \\
& \int \frac{\frac{1}{3}}{4 x^{2}+1} d x+\int \frac{-1 / 3}{x^{2}+4} d x \\
& \frac{1}{3} \int \frac{1}{4 x^{2}+1} \quad \begin{array}{ll}
u & =2 x \\
d u & =2 d x-\frac{1}{12} \int \frac{1}{1 x^{2}+1}
\end{array} 2 \cdot d u\left\{\begin{array}{l}
u=\frac{1}{2} x \\
d u=\frac{1}{2} d x
\end{array}\right. \\
& \frac{1}{3} \int \frac{1}{u^{2}+1} \frac{d u}{2}-\frac{1}{6} \int \frac{1}{u^{2}+1} d u \\
& =\frac{1}{6} \tan ^{-1} u \quad-\frac{1}{6} \tan ^{-1} u \\
& \frac{1}{6} \tan ^{-1}(2 x)-\frac{1}{6} \tan ^{-1}\left(\frac{1}{2} x\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sim}{(x-4)^{2} \cdot x^{3}}=\frac{A}{\left(x^{1}-4\right)^{2}}+\frac{B}{(x-4)^{1}}+\frac{C}{\left(x^{\prime}\right)^{3}}+\frac{D}{x^{2}}+\frac{E}{x} \\
& \frac{1}{x}+\frac{1}{x^{3}} \\
& \int \sqrt{\int \frac{x^{3}-2 x^{2}+1}{x^{2}-4 x}} \\
& \begin{array}{l}
\text { \& then do } \\
\text { partial fractions } \\
\text { on the }
\end{array} \\
& \text { remainder. }
\end{aligned}
$$

